Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-20T08:48:42.727Z Has data issue: false hasContentIssue false

Three-Dimensional Structure of Neurospora Mitochondria: New Insights Provided by Electron Tomography of the Frozen-Hydrated Organelles

Published online by Cambridge University Press:  02 July 2020

D. Nicastro
Affiliation:
Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, 82152Martinsried, Germany
A. S. Frangakis
Affiliation:
Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, 82152Martinsried, Germany
S. Nickell
Affiliation:
Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, 82152Martinsried, Germany
W. Baumeister
Affiliation:
Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, 82152Martinsried, Germany
Get access

Extract

Electron tomography is the most widely applicable method for obtaining three-dimensional information by electron microscopy. It is, in fact, the only method suitable for investigating pleomorphic structures, such as many supramolecular assemblies, organelles and cells. With the recent development of automated low-dose data-acquisition schemes, it is now possible to study molecules and cells embedded in vitreous ice. This opens up new horizons for investigating the functional organization of cellular components with minimal perturbation of the cellular context.

In the present study we used automated electron tomography in conjunction with cryomicroscopy to reveal the internal organization and ultrastructure of mitochondria. The whole isolated cell organelles from Neurospora crassa were quick-frozen and examined in vitrified ice. Single-axis tilt series were recorded with a Philips CM 120 Biotwin under low-dose conditions; the estimated total exposure was 10,000 enm−2. The tilt increment was 1° and the tilt series ranged from −65° to +65°. In order to enhance the contrast of the rather thick samples zero-loss energy filtering was employed. The images were recorded with a Ik × Ik CCD camera. The experimental setup has been described by Koster et al2 Three-dimensional reconstructions were performed by weighted backprojection. Prior to the three-dimensional visualization of 3-D data sets a denoising technique based on nonlinear anisotropic diffusion was applied (Figs. 2, 3).

Type
Cryotechniques, Immunocytochemistry, and Electron Microscopy
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baumeister, W.et al., Trends Cell Biol 9 (1999) 81.CrossRefGoogle Scholar
2.Koster, A. J.et al., J Struct Biol 120 (1997) 276.CrossRefGoogle Scholar
3.Hegerl, R. and Stoschek, A.. ICEM 14, Cancun Mexico(1998) 451.Google Scholar
4. This work was supported by a grant from the EU (contract BI 04 CT960099).Google Scholar