Skip to main content Accessibility help
×
Home

Three-Dimensional Nanoscale Mapping of State-of-the-Art Field-Effect Transistors (FinFETs)

  • Pritesh Parikh (a1), Corey Senowitz (a2), Don Lyons (a2), Isabelle Martin (a3), Ty J. Prosa (a3), Michael DiBattista (a4), Arun Devaraj (a5) and Y. Shirley Meng (a1)...

Abstract

The semiconductor industry has seen tremendous progress over the last few decades with continuous reduction in transistor size to improve device performance. Miniaturization of devices has led to changes in the dopants and dielectric layers incorporated. As the gradual shift from two-dimensional metal-oxide semiconductor field-effect transistor to three-dimensional (3D) field-effect transistors (finFETs) occurred, it has become imperative to understand compositional variability with nanoscale spatial resolution. Compositional changes can affect device performance primarily through fluctuations in threshold voltage and channel current density. Traditional techniques such as scanning electron microscope and focused ion beam no longer provide the required resolution to probe the physical structure and chemical composition of individual fins. Hence advanced multimodal characterization approaches are required to better understand electronic devices. Herein, we report the study of 14 nm commercial finFETs using atom probe tomography (APT) and scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy (STEM-EDS). Complimentary compositional maps were obtained using both techniques with analysis of the gate dielectrics and silicon fin. APT additionally provided 3D information and allowed analysis of the distribution of low atomic number dopant elements (e.g., boron), which are elusive when using STEM-EDS.

Copyright

Corresponding author

* Corresponding authors. miked@varioscale.com; shmeng@ucsd.edu

References

Hide All
Baravelli, E., Jurczak, M., Speciale, N., Meyer, K.D. & Dixit, A. (2008). Impact of LER and random dopant fluctuations on FinFET matching performance. IEEE Trans Nanotechnol 7, 291298.
Bardeen, J. & Brattain, W.H. (1948). The transistor, a semi-conductor triode. Phys Rev 74, 230231.
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617620.
Bernstein, K., Frank, D.J., Gattiker, A.E., Haensch, W., Ji, B.L., Nassif, S.R., Nowak, E.J., Pearson, D.J. & Rohrer, N.J. (2006). High-performance CMOS variability in the 65-nm regime and beyond. IBM J Res Dev 50, 433449.
Bohr, M. (2011). The evolution of scaling from the homogeneous era to the heterogeneous era. IEEE International Electron Devices Meeting, Washington, DC, pp. 1.1.1–1.1.6.
Bruce, M.R., Bruce, V.J., Eppes, D.H., Wilcox, J., Cole, E., Tangyunyong, P., Hawkins, C.F. & Ring, R. (2003). Soft defect localization (SDL) in integrated circuits using laser scanning microscopy. 16th Annual Meeting of the IEEE Conference. LEOS, Tucson, Arizona, pp. 662–663.
Chih-Tang, S. (1988). Evolution of the MOS transistor-from conception to VLSI. IEEE Proc 76, 12801326.
Deal, B.E. & Early, J.M. (1979). The evolution of silicon semiconductor technology: 1952–1977. J Electrochem Soc 126, 20C32C.
Devaraj, A., Colby, R., Vurpillot, F. & Thevuthasan, S. (2014). Understanding atom probe tomography of oxide-supported metal nanoparticles by correlation with atomic-resolution electron microscopy and field evaporation simulation. J Phys Chem Lett 5, 13611367.
Devaraj, A., Perea, D.E., Liu, J., Gordon, L.M., Prosa, T.J., Parikh, P., Diercks, D.R., Meher, S., Kolli, R.P., Meng, Y.S. & Thevuthasan, S. (2017). Three-dimensional nanoscale characterisation of materials by atom probe tomography. Int Mater Rev, doi:10.1080/09506608.2016.1270728.
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer.
Gilbert, M., Vandervorst, W., Koelling, S. & Kambham, A.K. (2011). Atom probe analysis of a 3D finFET with high-k metal gate. Ultramicroscopy 111, 530534.
Grenier, A., Duguay, S., Barnes, J.P., Serra, R., Haberfehlner, G., Cooper, D., Bertin, F., Barraud, S., Audoit, G., Arnoldi, L., Cadel, E., Chabli, A. & Vurpillot, F. (2014). 3D analysis of advanced nano-devices using electron and atom probe tomography. Ultramicroscopy 136, 185192.
Han, B., Takamizawa, H., Shimizu, Y., Inoue, K., Nagai, Y., Yano, F., Kunimune, Y., Inoue, M. & Nishida, A. (2015). Phosphorus and boron diffusion paths in polycrystalline silicon gate of a trench-type three-dimensional metal-oxide-semiconductor field effect transistor investigated by atom probe tomography. Appl Phys Lett 107, 023506.
Hatzistergos, M.S., Hopstaken, M., Kim, E., Vanamurthy, L. & Shaffer, J.F. (2013). Characterization of 3D dopant distribution in state of the art finFET structures. Microsc Microanal 19, 960961.
Hayase, Y., Hara, K., Ogata, S., Zhang, L., Akutsu, H., Kurihara, M., Norimatsu, K. & Nagamine, S. (2012). Applications of site-specific scanning spreading resistance microscopy (SSRM) to failure analysis of production lines. 12th International Workshop on Junction Technology, Shanghai, China, pp. 146–149.
Hisamoto, D., Lee, W.C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.J., Bokor, J. & Hu, C. (2000). FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices 47, 23202325.
Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y. & Hasegawa, M. (2009). Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109, 14791484.
Kambham, A.K., Kumar, A., Florakis, A. & Vandervorst, W. (2013a). Three-dimensional doping and diffusion in nano scaled devices as studied by atom probe tomography. Nanotechnology 24, 275705.
Kambham, A.K., Kumar, A., Gilbert, M. & Vandervorst, W. (2013b). 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography. Ultramicroscopy 132, 6569.
Kambham, A.K., Mody, J., Gilbert, M., Koelling, S. & Vandervorst, W. (2011). Atom-probe for FinFET dopant characterization. Ultramicroscopy 111, 535539.
Kambham, A.K., Zschaetzsch, G., Sasaki, Y., Togo, M., Horiguchi, N., Mody, J., Florakis, A., Gajula, D.R., Kumar, A., Gilbert, M. & Vandervorst, W. (2012). Atom probe tomography for 3D-dopant analysis in FinFET devices. Symposium on VLSI Technology, Honolulu, Hawaii, pp. 77–78.
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Annu Rev Mater Res 37, 681727.
Koelling, S., Innocenti, N., Hellings, G., Gilbert, M., Kambham, A.K., De Meyer, K. & Vandervorst, W. (2011). Characteristics of cross-sectional atom probe analysis on semiconductor structures. Ultramicroscopy 111, 540545.
Koelling, S., Li, A., Cavalli, A., Assali, S., Car, D., Gazibegovic, S., Bakkers, E.P.A.M. & Koenraad, P.M. (2017). Atom-by-atom analysis of semiconductor nanowires with parts per million sensitivity. Nano Lett 17, 599605.
Larson, D., Alvis, R., Lawrence, D., Prosa, T., Ulfig, R., Reinhard, D., Clifton, P., Gerstl, S., Bunton, J., Lenz, D., Kelly, T. & Stiller, K. (2008). Analysis of bulk dielectrics with atom probe tomography. Microsc Microanal 14, 12541255.
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.
Larson, D.J., Lawrence, D., Lefebvre, W., Olson, D., Prosa, T.J., Reinhard, D.A., Ulfig, R.M., Clifton, P.H., Bunton, J.H., Lenz, D., Olson, J.D., Renaud, L., Martin, I. & Kelly, T.F. (2011). Toward atom probe tomography of microelectronic devices. J Phys Conf Ser 326, 012030.
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P. & Kelly, T.F. (2013). Local Electrode Atom Probe Tomography. New York: Springer.
Lawrence, D., Alvis, R. & Olson, D. (2008). Specimen preparation for cross-section atom probe analysis. Microsc Microanal 14, 10041005.
Lefebvre-Ulrikson, W., Vurpillot, F. & Sauvage, X. (2016). Atom Probe Tomography: Put Theory into Practice. Amsterdam, Netherlands: Elsevier.
Lin, Y.-S., Puthenkovilakam, R. & Chang, J.P. (2002). Dielectric property and thermal stability of HfO2 on silicon. Appl Phys Lett 81, 20412043.
Madaan, N., Bao, J., Nandasiri, M., Xu, Z., Thevuthasan, S. & Devaraj, A. (2015). Impact of dynamic specimen shape evolution on the atom probe tomography results of doped epitaxial oxide multilayers: Comparison of experiment and simulation. Appl Phys Lett 107, 091601.
Mano, M.M. (1979). Digital Logic and Computer Design. Upper Saddle River, NJ: Prentice Hall PTR.
Miller, M.K. & Forbes, R.G. (2014). Atom-Probe Tomography. Boston, MA: Springer.
Moore, G.E. (1965). Cramming more components onto integrated circuits. Electronics 38, 114.
Nikawa, K., Inoue, S., Morimoto, K. & Sone, S. (1999). Failure analysis case studies using the IR-OBIRCH (infrared optical beam induced resistance change) method. Proceedings of the 8th Asian Test Symposium, Shanghai, China, pp. 394–399.
Panciera, F., Hoummada, K., Gregoire, M., Juhel, M., Lorut, F., Bicais, N. & Mangelinck, D. (2013). Atom probe tomography of SRAM transistors: Specimen preparation methods and analysis. Microelectron Eng 107, 167172.
Pei, G., Kedzierski, J., Oldiges, P., Ieong, M. & Kan, E.C.C. (2002). FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans Electron Devices 49, 14111419.
Phang, J.C.H., Chan, D.S.H., Palaniappan, M., Chin, J.M., Davis, B., Bruce, M., Wilcox, J., Gilfeather, G., Chua, C.M., Koh, L.S., Ng, H.Y. & Tan, S.H. (2004). A review of laser induced techniques for microelectronic failure analysis. Proceedings of the 11th International Symposium on Physical and Failure Analysis of Integrated Circuits, Taiwan, pp. 255–261.
Shiying, X. & Bokor, J. (2003). Sensitivity of double-gate and finfet devices to process variations. IEEE Trans Electron Devices 50, 22552261.
Takamizawa, H., Shimizu, Y., Nozawa, Y., Toyama, T., Morita, H., Yabuuchi, Y., Ogura, M. & Nagai, Y. (2012). Dopant characterization in self-regulatory plasma doped fin field-effect transistors by atom probe tomography. Appl Phys Lett 100, 093502.
Thompson, K., Flaitz, P.L., Ronsheim, P., Larson, D.J. & Kelly, T.F. (2007). Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317, 13701374.
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.
Thompson, S.E. & Parthasarathy, S. (2006). Moore’s law: The future of Si microelectronics. Mater Today 9, 2025.
Ulfig, R., Thompson, K., Alvis, R., Larson, D. & Ronsheim, P. (2007). Three dimensional compositional characterization of dielectric films with LEAP tomography. Microsc Microanal 13, 828.
Vurpillot, F., Gruber, M., Da Costa, G., Martin, I., Renaud, L. & Bostel, A. (2011). Pragmatic reconstruction methods in atom probe tomography. Ultramicroscopy 111, 12861294.
Wang, X., Brown, A.R., Cheng, B. & Asenov, A. (2011). Statistical variability and reliability in nanoscale FinFETs. International Electron Devices Meeting, 5.4.1–5.4.4.
Weste, N.H. & Eshraghian, K. (1985). Principles of CMOS VLSI Design, 188. Boston, MA: Addison-Wesley.
Zhang, L., Ohuchi, K., Adachi, K., Ishimaru, K., Takayanagi, M. & Nishiyama, A. (2007). High-resolution characterization of ultrashallow junctions by measuring in vacuum with scanning spreading resistance microscopy. Appl Phys Lett 90, 192103.

Keywords

Type Description Title
VIDEO
Supplementary materials

Parikh et al supplementary material
Parikh et al supplementary material 1

 Video (11.0 MB)
11.0 MB
WORD
Supplementary materials

Parikh et al supplementary material
Parikh et al supplementary material 2

 Word (1.6 MB)
1.6 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed