Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T04:49:54.278Z Has data issue: false hasContentIssue false

Three-Dimensional Imaging of Sulfides in Silicate Rocks at Submicron Resolution with Multiphoton Microscopy

Published online by Cambridge University Press:  18 November 2011

Antoine Bénard*
Affiliation:
Université de Lyon & Université Jean Monnet, 23, rue Dr. Paul Michelon, 42023 Saint-Étienne & UMR 6524, CNRS, France
Sabine Palle
Affiliation:
Centre de Microscopie Confocale Multiphotonique, 18, Rue Pr Benoît Lauras, 42000 Saint-Étienne, France
Luc Serge Doucet
Affiliation:
Université de Lyon & Université Jean Monnet, 23, rue Dr. Paul Michelon, 42023 Saint-Étienne & UMR 6524, CNRS, France
Dmitri A. Ionov
Affiliation:
Université de Lyon & Université Jean Monnet, 23, rue Dr. Paul Michelon, 42023 Saint-Étienne & UMR 6524, CNRS, France
*
Corresponding author. E-mail: antoine.benard@univ-st-etienne.fr
Get access

Abstract

We report the first application of multiphoton microscopy (MPM) to generate three-dimensional (3D) images of natural minerals (micron-sized sulfides) in thick (∼120 μm) rock sections. First, reflection mode (RM) using confocal laser scanning microscopy (CLSM), combined with differential interference contrast (DIC), was tested on polished sections. Second, two-photon fluorescence (TPF) and second harmonic signal (SHG) images were generated using a femtosecond-laser on the same rock section without impregnation by a fluorescent dye. CSLM results show that the silicate matrix is revealed with DIC and RM, while sulfides can be imaged in 3D at low resolution by RM. Sulfides yield strong autofluorescence from 392 to 715 nm with TPF, while SHG is only produced by the embedding medium. Simultaneous recording of TPF and SHG images enables efficient discrimination between different components of silicate rocks. Image stacks obtained with MPM enable complete reconstruction of the 3D structure of a rock slice and of sulfide morphology at submicron resolution, which has not been previously reported for 3D imaging of minerals. Our work suggests that MPM is a highly efficient tool for 3D studies of microstructures and morphologies of minerals in silicate rocks, which may find other applications in geosciences.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, S.J., Fiorentini, M.L., Austin, P., Gessner, K., Hough, R.M. & Squelch, A.P. (2008). Three-dimensional morphology of magmatic sulfides sheds light on ore formation and sulphide melt migration. Geology 36(8), 655658.Google Scholar
Bénard, A. & Ionov, D.A. (2009). Veined peridotite xenoliths from the Avacha volcano, Kamchatka: Fluid types and fluid-rock interaction in supra-subduction mantle. Geochim Cosmochim Acta 73(13, S1), A 108.Google Scholar
Bénard, A. & Ionov, D.A. (2010). PGE and trace elements in veined sub-arc mantle xenoliths, Avachinsky volcano, Kamchatka. Geochim Cosmochim Acta 78(12, S1), A 76.Google Scholar
Campagnola, P.J., Wei, M., Lewis, A. & Loew, L.M. (1999). High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys J 77, 33413349.CrossRefGoogle ScholarPubMed
Carlson, W.D. (2006). Three-dimensional imaging of earth and planetary materials. Earth Planet Sci Lett 249, 133147.CrossRefGoogle Scholar
Cox, G. & Sheppard, C.J.R. (2004). Practical limits of resolution in confocal and non-linear microscopy. Microsc Res Tech 63, 1822.Google Scholar
Denk, W. (1996). Two-photon excitation in functional biological imaging. J Biomed Optics 1, 296304.Google Scholar
Denk, W., Strickler, J.H. & Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 7376.Google Scholar
Ersen, O., Hirlimann, C., Drillon, M., Werckmann, J., Tihay, F., Pham-Huu, C., Crucifix, C. & Schultz, P. (2007). 3D-TEM characterization of nanometric objects. Solid State Sci 9, 10881098.CrossRefGoogle Scholar
Fredrich, J.T. (1999). 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes. Phys Chem Earth (A) 24(7), 551561.Google Scholar
Fredrich, J.T., Menendez, B. & Wong, T.F. (1995). Imaging the pore structure of geomaterials. Science 268, 276279.Google Scholar
Godel, B., Barnes, S-J. & Maier, W.D. (2006). 3-D distribution of sulphide minerals in the Merensky reef (Bushveld complex, south Africa) and the J-M reef (Stillwater complex, USA) and their relationship to microstructures using X-ray computed tomography. J Petrol 47, 18531872.CrossRefGoogle Scholar
Göppert-Mayer, M. (1931). Uber elementarakte mit zwei quantensprüngen. Ann Phys 9, 273294.CrossRefGoogle Scholar
Gualda, G.A.R. & Rivers, M. (2006). Quantitative 3D petrography using X-ray tomography: Application to bishop tuff pumice clast. J Volc Geotherm Res 154, 4862.CrossRefGoogle Scholar
Horath, T., Neu, T.R. & Bachofen, R. (2006). An endolithic microbial community in dolomite rock in central Switzerland: Characterization by reflection spectroscopy, pigment analyses, scanning electron microscopy, and laser scanning microscopy. Microb Ecol 51, 353364.Google Scholar
Ionov, D.A. (2010). Petrology of mantle wedge lithosphere: New data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka. J Petrol 51, 327361.CrossRefGoogle Scholar
Lindquist, W.B. & Venkatarangan, A. (1999). Investigating 3D geometry of porous media from high resolution images. Phys Chem Earth (A) 25(7), 593599.CrossRefGoogle Scholar
Menendez, B., David, C. & Darot, M. (1999). A study of the crack network in thermally and mechanically cracked granite samples using confocal scanning laser. Phys Chem Earth 24(7), 627632.Google Scholar
Onishi, C.T. & Shimizu, I. (2005). Microcrack networks in granite affected by a fault zone: Visualization by confocal laser scanning microscopy. J Struct Geol 27, 22682280.Google Scholar
Pasteris, J.D., Freeman, J.J., Goffredi, S.K. & Buck, K.R. (2001). Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chem Geol 180, 318.Google Scholar
Pawley, J.B. (1995). Handbook of Biological Confocal Microscopy. New York: Springer.Google Scholar
Schopf, J.W. & Kudryavtsev, A. (2009). Confocal laser microscopy and Raman imagery of ancient microscopic fossils. Precam Res 173, 3949.Google Scholar
Song, L., Hennink, E.J., Young, I.T. & Tanke, H.J. (1995). Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68, 25882600.CrossRefGoogle ScholarPubMed
Stoller, P., Krüger, Y., Rička, J. & Frenz, M. (2007). Femtosecond lasers in fluid inclusion analysis: Three-dimensional imaging and determination of inclusion volume in quartz using second harmonic generation microscopy. Earth Planet Sci Lett 253, 359368.CrossRefGoogle Scholar
Sutton, S.R., Bertsch, P.M., Newville, M., Rivers, M., Lanzirotti, A. & Eng, P. (2002). Microfluorescence and microtomography analyses of heterogeneous earth and environmental materials. Rev Mineral Geochem 49, 429483.CrossRefGoogle Scholar
Waychunas, G.A. (2002). Apatite luminescence. Rev Mineral Geochem 48, 701742.CrossRefGoogle Scholar
Wincott, P.L. & Vaughan, D.J. (2006). Spectroscopic studies of sulfides. Rev Mineral Geochem 61, 181229.Google Scholar
Wirth, R. (2009). Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261, 217229.CrossRefGoogle Scholar
Supplementary material: PDF

Bénard Supplementary Figure

Supplementary Figure 1. (a–c) Projections of image stacks and (d) a 3D reconstruction of pyrrhotite in an orthopyroxenerich vein cutting a peridotite xenolith from the Avacha volcano with MPM, and (e) representative TPF emission spectra of different natural sulfide species.

Download Bénard Supplementary Figure(PDF)
PDF 186 KB