Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-24T10:50:03.409Z Has data issue: false hasContentIssue false

Three-Dimensional Chemistry of Multiphase Nanomaterials by Energy-Filtered Transmission Electron Microscopy Tomography

Published online by Cambridge University Press:  02 October 2012

Lucian Roiban
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France
Loïc Sorbier
Affiliation:
IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France
Christophe Pichon
Affiliation:
IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France
Pascale Bayle-Guillemaud
Affiliation:
CEA/INAC, 17, rue des Martyrs, 38054 Grenoble cedex 9, France
Jacques Werckmann
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
Marc Drillon
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
Ovidiu Ersen*
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France
*
*Corresponding author. E-mail: Ovidiu.Ersen@ipcms.unistra.fr
Get access

Abstract

A three-dimensional (3D) study of multiphase nanostructures by chemically selective electron tomography combining tomographic approach and energy-filtered imaging is reported. The implementation of this technique at the nanometer scale requires careful procedures for data acquisition, computing, and analysis. Based on the performances of modern transmission electron microscopy equipment and on developments in data processing, electron tomography in the energy-filtered imaging mode is shown to be a very appropriate analysis tool to provide 3D chemical maps at the nanoscale. Two examples highlight the usefulness of analytical electron tomography to investigate inhomogeneous 3D nanostructures, such as multiphase specimens or core-shell nanoparticles. The capability of discerning in a silica-alumina porous particle the two different components is illustrated. A quantitative analysis in the whole specimen and toward the pore surface is reported. This tool is shown to open new perspectives in catalysis by providing a way to characterize precisely 3D nanostructures from a chemical point of view.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aronova, M.A., Kim, Y.C., Harmon, R., Sousa, A.A., Zhang, G. & Leapman, R.D. (2007). Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST). J Struct Biol 160, 3548.CrossRefGoogle ScholarPubMed
Aronova, M.A., Kim, Y.C., Pivovarova, N.B., Andrews, S.B. & Leapman, R.D. (2009). Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens. Ultramicroscopy 109, 201212.Google Scholar
Corma, A. (1995). Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95, 559614.Google Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.CrossRefGoogle Scholar
Ersen, O., Hirlimann, C., Drillon, M., Werckmann, J., Tihay, F., Pham-Huu, C., Crucifix, C. & Schultz, P. (2007a). 3D-TEM characterization of nanometric objects. Solid State Sci 9, 10881098.Google Scholar
Ersen, O., Werckmann, J., Houlle, M., Ledoux, M.J. & Pham-Huu, C. (2007b). 3D electron microscopy study of metal particles inside multiwalled carbon nanotubes. Nano Lett 7, 18981907.CrossRefGoogle ScholarPubMed
Euzen, P., Bobin, C., Roy-Auberger, M., Benazzi, E., Bourges, P. & Gueret, C. (2004). Catalyst and process for hydrocracking hydrocarbon-containing feedstocks. US Patent US2004/0138059 A1.Google Scholar
Florea, I., Ersen, O., Hirlimann, C., Roiban, L., Deneuve, A., Houlle, M., Janowska, I., Nguyen, P., Pham, C. & Pham-Huu, C. (2010). Analytical electron tomography mapping of the SiC pore oxidation at the nanoscale. Nanoscale 2, 26682678.Google Scholar
Friedrich, H., de Jongh, P.E., Verkleij, A.J. & de Jong, K.P. (2009). Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem Rev 109, 16131629.Google Scholar
Gordon, R., Bender, R. & Herman, G.T. (1970). Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol A 29, 471481.Google Scholar
Goris, B., Bals, S., Van den Broek, W., Verbeeck, J. & Van Tendeloo, G. (2011). Exploring different inelastic projection mechanisms for electron tomography. Ultramicroscopy 111, 12621267.CrossRefGoogle ScholarPubMed
Hart, R.G. (1968). Electron microscopy of unstained biological material: The polytropic montage. Science 159, 14641467.Google Scholar
Jarausch, K., Thomas, P., Leonard, D.N., Twesten, R. & Booth, C.R. (2009). Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography. Ultramicroscopy 109, 326337.CrossRefGoogle ScholarPubMed
Jiang, N., Su, D. & Spence, J.C.H. (2010). On the measurement of thickness in nanoporous materials by EELS. Ultramicroscopy 111, 6265.CrossRefGoogle ScholarPubMed
Jin-Phillipp, N.Y., Koch, C.T. & van Aken, P.A. (2011). Toward quantitative core-loss EFTEM tomography. Ultramicroscopy 111, 12551261.CrossRefGoogle ScholarPubMed
Koster, A.J., Ziese, U., Verkleij, A.J., Janssen, A.H. & de Jong, K.P. (2000). Three-dimensional transmission electron microscopy: A novel imaging and characterization technique with nanometer scale resolution for materials science. J Phys Chem B 104, 93689370.CrossRefGoogle Scholar
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. (1996). Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116, 7176.Google Scholar
Krivanek, O.L., Kundmann, M.K. & Kimoto, K. (1995). Spatial resolution in EFTEM elemental maps. J Microsc 180, 277287.Google Scholar
Leapman, R.D., Kocsis, E., Zhang, G., Talbot, T.L. & Laquerriere, P. (2004). Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100, 115125.Google Scholar
Lo, S.C. (2004). Spatial resolution of ESI images. Available at http://www.felmi-zfe.tugraz.at/dm_scripts/.Google Scholar
Messaoudi, C., Boudier, T., Sorzano, C.O.S. & Marco, S. (2007). TomoJ: Tomography software for three-dimensional reconstruction in transmission electron microscopy. CBMC Bioinformatics 8, 288.CrossRefGoogle Scholar
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.Google Scholar
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.Google Scholar
Midgley, P.A., Weyland, M., Thomas, J.M. & Johnson, B.F.G. (2001). Z-Contrast tomography: A technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem Comm 10, 907908.CrossRefGoogle Scholar
Möbus, G., Doole, R.C. & Inkson, B.J. (2003). Spectroscopic electron tomography. Ultramicroscopy 96, 433451.Google Scholar
Möbus, G. & Inkson, B.J. (2001). Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl Phys Lett 79, 13691371.Google Scholar
Möbus, G. & Inkson, B.J. (2007). Nanoscale tomography in materials science. Mat Today 10, 1825.Google Scholar
Penczek, P., Marko, M., Buttle, K. & Frank, J. (1995). Double tilt electron tomography. Ultramicroscopy 60, 393410.CrossRefGoogle ScholarPubMed
Radermacher, M. (1997). Radon transform techniques for alignment and three-dimensional reconstruction from random projections. Scan Microsc 11, 171177.Google Scholar
Saxton, W.O., Baumeister, W. & Hahn, M. (1984). 3-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13, 5770.Google Scholar
Thomas, J.M. & Midgley, P. (2002). An introduction to energy-filtered transmission electron microscopy. Top Catal 21, 109138.Google Scholar
Verbeeck, J., Van Dyck, D. & Van Tandeloo, G. (2004). Energy-filtered transmission electron microscopy: An overview. Spectro Chim Acta B 59, 15291534.Google Scholar
Weyland, M. & Midgley, P.A. (2003). Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography, Microsc Microanal 9, 542555.Google Scholar
Weyland, M., Yates, T.J.V., Dunin-Borkowski, R.E., Laffont, L. & Midgley, P.A. (2006). Nanoscale analysis of three-dimensional structures by electron tomography. Scripta Mater 55, 2933.Google Scholar
Supplementary material: PDF

Lucian Roiban Supplementary Material

Appendix

Download Lucian Roiban Supplementary Material(PDF)
PDF 661.9 KB