Skip to main content Accessibility help
×
Home

Three-Dimensional Chemistry of Multiphase Nanomaterials by Energy-Filtered Transmission Electron Microscopy Tomography

  • Lucian Roiban (a1) (a2), Loïc Sorbier (a2), Christophe Pichon (a2), Pascale Bayle-Guillemaud (a3), Jacques Werckmann (a1), Marc Drillon (a1) and Ovidiu Ersen (a1)...

Abstract

A three-dimensional (3D) study of multiphase nanostructures by chemically selective electron tomography combining tomographic approach and energy-filtered imaging is reported. The implementation of this technique at the nanometer scale requires careful procedures for data acquisition, computing, and analysis. Based on the performances of modern transmission electron microscopy equipment and on developments in data processing, electron tomography in the energy-filtered imaging mode is shown to be a very appropriate analysis tool to provide 3D chemical maps at the nanoscale. Two examples highlight the usefulness of analytical electron tomography to investigate inhomogeneous 3D nanostructures, such as multiphase specimens or core-shell nanoparticles. The capability of discerning in a silica-alumina porous particle the two different components is illustrated. A quantitative analysis in the whole specimen and toward the pore surface is reported. This tool is shown to open new perspectives in catalysis by providing a way to characterize precisely 3D nanostructures from a chemical point of view.

Copyright

Corresponding author

*Corresponding author. E-mail: Ovidiu.Ersen@ipcms.unistra.fr

References

Hide All
Aronova, M.A., Kim, Y.C., Harmon, R., Sousa, A.A., Zhang, G. & Leapman, R.D. (2007). Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST). J Struct Biol 160, 3548.
Aronova, M.A., Kim, Y.C., Pivovarova, N.B., Andrews, S.B. & Leapman, R.D. (2009). Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens. Ultramicroscopy 109, 201212.
Corma, A. (1995). Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95, 559614.
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.
Ersen, O., Hirlimann, C., Drillon, M., Werckmann, J., Tihay, F., Pham-Huu, C., Crucifix, C. & Schultz, P. (2007a). 3D-TEM characterization of nanometric objects. Solid State Sci 9, 10881098.
Ersen, O., Werckmann, J., Houlle, M., Ledoux, M.J. & Pham-Huu, C. (2007b). 3D electron microscopy study of metal particles inside multiwalled carbon nanotubes. Nano Lett 7, 18981907.
Euzen, P., Bobin, C., Roy-Auberger, M., Benazzi, E., Bourges, P. & Gueret, C. (2004). Catalyst and process for hydrocracking hydrocarbon-containing feedstocks. US Patent US2004/0138059 A1.
Florea, I., Ersen, O., Hirlimann, C., Roiban, L., Deneuve, A., Houlle, M., Janowska, I., Nguyen, P., Pham, C. & Pham-Huu, C. (2010). Analytical electron tomography mapping of the SiC pore oxidation at the nanoscale. Nanoscale 2, 26682678.
Friedrich, H., de Jongh, P.E., Verkleij, A.J. & de Jong, K.P. (2009). Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem Rev 109, 16131629.
Gordon, R., Bender, R. & Herman, G.T. (1970). Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol A 29, 471481.
Goris, B., Bals, S., Van den Broek, W., Verbeeck, J. & Van Tendeloo, G. (2011). Exploring different inelastic projection mechanisms for electron tomography. Ultramicroscopy 111, 12621267.
Hart, R.G. (1968). Electron microscopy of unstained biological material: The polytropic montage. Science 159, 14641467.
Jarausch, K., Thomas, P., Leonard, D.N., Twesten, R. & Booth, C.R. (2009). Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography. Ultramicroscopy 109, 326337.
Jiang, N., Su, D. & Spence, J.C.H. (2010). On the measurement of thickness in nanoporous materials by EELS. Ultramicroscopy 111, 6265.
Jin-Phillipp, N.Y., Koch, C.T. & van Aken, P.A. (2011). Toward quantitative core-loss EFTEM tomography. Ultramicroscopy 111, 12551261.
Koster, A.J., Ziese, U., Verkleij, A.J., Janssen, A.H. & de Jong, K.P. (2000). Three-dimensional transmission electron microscopy: A novel imaging and characterization technique with nanometer scale resolution for materials science. J Phys Chem B 104, 93689370.
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. (1996). Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116, 7176.
Krivanek, O.L., Kundmann, M.K. & Kimoto, K. (1995). Spatial resolution in EFTEM elemental maps. J Microsc 180, 277287.
Leapman, R.D., Kocsis, E., Zhang, G., Talbot, T.L. & Laquerriere, P. (2004). Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100, 115125.
Lo, S.C. (2004). Spatial resolution of ESI images. Available at http://www.felmi-zfe.tugraz.at/dm_scripts/.
Messaoudi, C., Boudier, T., Sorzano, C.O.S. & Marco, S. (2007). TomoJ: Tomography software for three-dimensional reconstruction in transmission electron microscopy. CBMC Bioinformatics 8, 288.
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.
Midgley, P.A., Weyland, M., Thomas, J.M. & Johnson, B.F.G. (2001). Z-Contrast tomography: A technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem Comm 10, 907908.
Möbus, G., Doole, R.C. & Inkson, B.J. (2003). Spectroscopic electron tomography. Ultramicroscopy 96, 433451.
Möbus, G. & Inkson, B.J. (2001). Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl Phys Lett 79, 13691371.
Möbus, G. & Inkson, B.J. (2007). Nanoscale tomography in materials science. Mat Today 10, 1825.
Penczek, P., Marko, M., Buttle, K. & Frank, J. (1995). Double tilt electron tomography. Ultramicroscopy 60, 393410.
Radermacher, M. (1997). Radon transform techniques for alignment and three-dimensional reconstruction from random projections. Scan Microsc 11, 171177.
Saxton, W.O., Baumeister, W. & Hahn, M. (1984). 3-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13, 5770.
Thomas, J.M. & Midgley, P. (2002). An introduction to energy-filtered transmission electron microscopy. Top Catal 21, 109138.
Verbeeck, J., Van Dyck, D. & Van Tandeloo, G. (2004). Energy-filtered transmission electron microscopy: An overview. Spectro Chim Acta B 59, 15291534.
Weyland, M. & Midgley, P.A. (2003). Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography, Microsc Microanal 9, 542555.
Weyland, M., Yates, T.J.V., Dunin-Borkowski, R.E., Laffont, L. & Midgley, P.A. (2006). Nanoscale analysis of three-dimensional structures by electron tomography. Scripta Mater 55, 2933.

Keywords

Related content

Powered by UNSILO
Type Description Title
PDF
Supplementary materials

Lucian Roiban Supplementary Material
Appendix

 PDF (662 KB)
662 KB

Three-Dimensional Chemistry of Multiphase Nanomaterials by Energy-Filtered Transmission Electron Microscopy Tomography

  • Lucian Roiban (a1) (a2), Loïc Sorbier (a2), Christophe Pichon (a2), Pascale Bayle-Guillemaud (a3), Jacques Werckmann (a1), Marc Drillon (a1) and Ovidiu Ersen (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.