Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T17:58:54.665Z Has data issue: false hasContentIssue false

Structural Remodeling and Mechanical Function in Heart Failure

Published online by Cambridge University Press:  18 January 2012

Bridget Louise Leonard*
Affiliation:
Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
Bruce Henry Smaill
Affiliation:
Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
Ian John LeGrice
Affiliation:
Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
*
Corresponding author. E-mail: b.leonard@auckland.ac.nz
Get access

Abstract

The cardiac extracellular matrix (ECM) is the three-dimensional scaffold that defines the geometry and muscular architecture of the cardiac chambers and transmits forces produced during the cardiac cycle throughout the heart wall. The cardiac ECM is an active system that responds to the stresses to which it is exposed and in the normal heart is adapted to facilitate efficient mechanical function. There are marked differences in the short- and medium-term changes in ventricular geometry and cardiac ECM that occur as a result of volume overload, hypertension, and ischemic cardiomyopathy. Despite this, there is a widespread view that a common remodeling “phenotype” governs the final progression to end-stage heart failure in different forms of heart disease. In this review article, we make the case that this interpretation is not consistent with the clinical and experimental data on the topic. We argue that there is a need for new theoretical and experimental models that will enable stresses acting on the ECM and resultant deformations to be estimated more accurately and provide better spatial resolution of local signaling mechanisms that are activated as a result. These developments are necessary to link the effects of structural remodeling with altered cardiac mechanical function.

Type
Review Article
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, J.R. & Ferguson, M.W. (1995). Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial, Monodelphis domestica. Dev Biol 169, 242260.CrossRefGoogle ScholarPubMed
Arts, T., Costa, K.D., Covell, J.W. & McCulloch, A.D. (2001). Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am J Physiol 280, H2222H2229.Google ScholarPubMed
Badenhorst, D., Maseko, M., Tsotetsi, O.J., Naidoo, A., Brooksbank, R., Norton, G.R. & Woodiwiss, A.J. (2003). Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc Res 57, 632641.CrossRefGoogle ScholarPubMed
Bairati, A. (1937). Struttura e proprieta fisiche del Sarcolemma della fibra Muscolore striata. Z Zellforsch 27, 100124.CrossRefGoogle Scholar
Banerjee, I., Fuseler, J.W., Intwala, A.R. & Baudino, T.A. (2009). IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol 296, H1694H1704.Google ScholarPubMed
Banerjee, I., Fuseler, J.W., Price, R.L., Borg, T.K. & Baudino, T.A. (2007). Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol 293, H1883H1891.Google ScholarPubMed
Barlucchi, L., Leri, A., Dostal, D.E., Fiordaliso, F., Tada, H., Hintze, T.H., Kajstura, J., Nadal-Ginard, B. & Anversa, P. (2001). Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Circ Res 88, 298304.CrossRefGoogle ScholarPubMed
Bashey, R.I., Martinez-Hernandez, A. & Jimenez, S.A. (1992). Isolation, characterization, and localization of cardiac collagen type VI. Associations with other extracellular matrix components. Circ Res 70, 10061017.CrossRefGoogle ScholarPubMed
Baudino, T.A., Carver, W., Giles, W. & Borg, T.K. (2006). Cardiac fibroblasts: Friend or foe? Am J Physiol 291, H1015H1026.Google ScholarPubMed
Beltrami, C.A., Finato, N., Rocco, M., Feruglio, G.A., Puricelli, C., Cigola, E., Quaini, F., Sonnenblick, E.H., Olivetti, G. & Anversa, P. (1994). Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89, 151163.CrossRefGoogle ScholarPubMed
Berenji, K., Drazner, M.H., Rothermel, B.A. & Hill, J.A. (2005). Does load-induced ventricular hypertrophy progress to systolic heart failure? Am J Physiol 289, H8H16.Google ScholarPubMed
Berk, B.C., Fujiwara, K. & Lehoux, S. (2007). ECM remodeling in hypertensive heart disease. J Clin Invest 117, 568575.CrossRefGoogle ScholarPubMed
Bernardo, B.C., Weeks, K.L., Pretorius, L. & McMullen, J.R. (2010). Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol Ther 128, 191227.CrossRefGoogle ScholarPubMed
Bertini, M., Delgado, V., Nucifora, G., Ajmone Marsan, N., Ng, A.C., Shanks, M., Antoni, M.L., van de Veire, N.R., van Bommel, R.J., Rapezzi, C., Schalij, M.J. & Bax, J.J. (2010). Left ventricular rotational mechanics in patients with coronary artery disease: Differences in subendocardial and subepicardial layers. Heart 96, 17371743.CrossRefGoogle ScholarPubMed
Bhole, A.P., Flynn, B.P., Liles, M., Saeidi, N., Dimarzio, C.A. & Ruberti, J.W. (2009). Mechanical strain enhances survivability of collagen micronetworks in the presence of collagenase: Implications for load-bearing matrix growth and stability. Philos Trans R Soc A 367, 33393362.CrossRefGoogle ScholarPubMed
Bing, O.H., Brooks, W.W., Robinson, K.G., Slawsky, M.T., Hayes, J.A., Litwin, S.E., Sen, S. & Conrad, C.H. (1995). The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. J Mol Cell Cardiol 27, 383396.CrossRefGoogle Scholar
Bing, O.H.L., Conrad, C.H., Boluyt, M.O., Robinson, K.G. & Brooks, W.W. (2002). Studies of prevention, treatment and mechanisms of heart failure in the aging spontaneously hypertensive rat. Heart Failure Rev 7, 7188.CrossRefGoogle ScholarPubMed
Bishop, J.E. & Laurent, G.J. (1995). Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J 16(Suppl C), 3844.CrossRefGoogle ScholarPubMed
Bogaert, J., Bosmans, H., Maes, A., Suetens, P., Marchal, G. & Rademakers, F.E. (2000). Remote myocardial dysfunction after acute anterior myocardial infarction: Impact of left ventricular shape on regional function: A magnetic resonance myocardial tagging study. J Am Coll Cardiol 35, 15251534.CrossRefGoogle ScholarPubMed
Boluyt, M.O. & Bing, O.H. (2000). Matrix gene expression and decompensated heart failure: The aged SHR model. Cardiovasc Res 46, 239249.CrossRefGoogle ScholarPubMed
Borg, A.N., Harrison, J.L., Argyle, R.A. & Ray, S.G. (2008). Left ventricular torsion in primary chronic mitral regurgitation. Heart 94, 597603.CrossRefGoogle ScholarPubMed
Borg, T.K. & Baudino, T.A. (2011). Dynamic interactions between the cellular components of the heart and the extracellular matrix. Pflugers Archiv—Eur J Physiol 462, 6974.CrossRefGoogle ScholarPubMed
Bove, C.M., Gilson, W.D., Scott, C.D., Epstein, F.H., Yang, Z., Dimaria, J.M., Berr, S.S., French, B.A., Bishop, S.P. & Kramer, C.M. (2005). The angiotensin II type 2 receptor and improved adjacent region function post-MI. J Cardiovasc Magn Reson 7, 459464.CrossRefGoogle ScholarPubMed
Bovendeerd, P.H., Arts, T., Huyghe, J.M., van Campen, D.H. & Reneman, R.S. (1992). Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A model study. J Biomech 25, 11291140.CrossRefGoogle ScholarPubMed
Bowers, S.L., Banerjee, I. & Baudino, T.A. (2010). The extracellular matrix: At the center of it all. J Mol Cell Cardiol 48, 474482.CrossRefGoogle Scholar
Brilla, C.G., Funck, R.C. & Rupp, H. (2000). Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102, 13881393.CrossRefGoogle ScholarPubMed
Brilla, C.G., Janicki, J.S. & Weber, K.T. (1991a). Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 83, 17711779.CrossRefGoogle ScholarPubMed
Brilla, C.G., Janicki, J.S. & Weber, K.T. (1991b). Impaired diastolic function and coronary reserve in genetic hypertension. Role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries. Circ Res 69, 107115.CrossRefGoogle ScholarPubMed
Brilla, C.G., Matsubara, L. & Weber, K.T. (1996). Advanced hypertensive heart disease in spontaneously hypertensive rats. Lisinopril-mediated regression of myocardial fibrosis. Hypertension 28, 269275.CrossRefGoogle ScholarPubMed
Brooks, W.W., Bing, O.H., Robinson, K.G., Slawsky, M.T., Chaletsky, D.M. & Conrad, C.H. (1997). Effect of angiotensin-converting enzyme inhibition on myocardial fibrosis and function in hypertrophied and failing myocardium from the spontaneously hypertensive rat. Circulation 96, 40024010.CrossRefGoogle ScholarPubMed
Brower, G.L., Gardner, J.D., Forman, M.F., Murray, D.B., Voloshenyuk, T., Levick, S.P. & Janicki, J.S. (2006). The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur J Cardiothorac Surg 30, 604610.CrossRefGoogle ScholarPubMed
Brower, G.L. & Janicki, J.S. (2001). Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol 280, H674H683.Google ScholarPubMed
Brower, G.L., Levick, S.P. & Janicki, J.S. (2007). Inhibition of matrix metalloproteinase activity by ACE inhibitors prevents left ventricular remodeling in a rat model of heart failure. Am J Physiol 292, H3057H3064.Google Scholar
Bucala, R., Spiegel, L.A., Chesney, J., Hogan, M. & Cerami, A. (1994). Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1, 7181.CrossRefGoogle ScholarPubMed
Buchalter, M.B., Rademakers, F.E., Weiss, J.L., Rogers, W.J., Weisfeldt, M.L. & Shapiro, E.P. (1994). Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: Effects of catecholamines, ischaemia, and pacing. Cardiovasc Res 28, 629635.CrossRefGoogle ScholarPubMed
Butt, R.P. & Bishop, J.E. (1997). Mechanical load enhances the stimulatory effect of serum growth factors on cardiac fibroblast procollagen synthesis. J Mol Cell Cardiol 29, 11411151.CrossRefGoogle ScholarPubMed
Calderone, A., Thaik, C.M., Takahashi, N., Chang, D.L. & Colucci, W.S. (1998). Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101, 812818.CrossRefGoogle ScholarPubMed
Camelliti, P., Borg, T.K. & Kohl, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65, 4051.CrossRefGoogle ScholarPubMed
Canty, E.G. & Kadler, K.E. (2005). Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118, 13411353.CrossRefGoogle ScholarPubMed
Carver, W., Nagpal, M.L., Nachtigal, M., Borg, T.K. & Terracio, L. (1991). Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69, 116122.CrossRefGoogle ScholarPubMed
Caulfield, J.B. & Borg, T.K. (1979). The collagen network of the heart. Lab Invest 40, 364372.Google ScholarPubMed
Cingolani, O.H., Yang, X.-P., Cavasin, M.A. & Carretero, O.A. (2003). Increased systolic performance with diastolic dysfunction in adult spontaneously hypertensive rats. Hypertension 41, 249254.CrossRefGoogle ScholarPubMed
Cleland, J.G., Cohen-Solal, A., Aguilar, J.C., Dietz, R., Eastaugh, J., Follath, F., Freemantle, N., Gavazzi, A., van Gilst, W.H., Hobbs, F.D., Korewicki, J., Madeira, H.C., Preda, I., Swedberg, K., Widimsky, J. & Improvement of Heart Failure Programme Committees Investigators. (2002). Improvement programme in evaluation management; Study Group on Diagnosis of the Working Group on Heart Failure of The European Society of Cardiology. Management of heart failure in primary care (the IMPROVEMENT of Heart Failure Programme): An international survey. Lancet 360, 16311639.CrossRefGoogle Scholar
Cleutjens, J.P., Verluyten, M.J., Smiths, J.F. & Daemen, M.J. (1995). Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147, 325338.Google ScholarPubMed
Costa, K.D., Takayama, Y., McCulloch, A.D. & Covell, J.W. (1999). Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am J Physiol 276, H595H607.Google ScholarPubMed
Creemers, E.E. & Pinto, Y.M. (2011). Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89, 265272.CrossRefGoogle ScholarPubMed
Dean, R.G., Balding, L.C., Candido, R., Burns, W.C., Cao, Z., Twigg, S.M. & Burrell, L.M. (2005). Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem 53, 12451256.CrossRefGoogle ScholarPubMed
De Keulenaer, G.W. & Brutsaert, D.L. (2007). Systolic and diastolic heart failure: Different phenotypes of the same disease? Eur J Heart Fail 9, 136143.CrossRefGoogle ScholarPubMed
Dell'Italia, L.J., Balcells, E., Meng, Q.C., Su, X., Schultz, D., Bishop, S.P., Machida, N., Straeter-Knowlen, I.M., Hankes, G.H., Dillon, R., Cartee, R.E. & Oparil, S. (1997). Volume-overload cardiac hypertrophy is unaffected by ACE inhibitor treatment in dogs. Am J Physiol 273, H961H970.Google ScholarPubMed
Diwan, A. & Dorn, G.W. (2011). Molecular basis for heart failure. In Heart Failure: A Companion to Braunwald's Heart Disease, Mann, D.L. (Ed.), pp. 731. St Louis, MO: Elsevier Saunders.CrossRefGoogle Scholar
Dong, S.J., Hees, P.S., Huang, W.M., Buffer, S.A. Jr., Weiss, J.L. & Shapiro, E.P. (1999). Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol 277, H1053H1060.Google ScholarPubMed
Drazner, M.H. (2011). The progression of hypertensive heart disease. Circulation 123, 327334.CrossRefGoogle ScholarPubMed
Driessen, N.J., Boerboom, R.A., Huyghe, J.M., Bouten, C.V. & Baaijens, F.P. (2003). Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng 125, 549557.CrossRefGoogle ScholarPubMed
Eichhorn, E.J. & Bristow, M.R. (1996). Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation 94, 22852296.CrossRefGoogle Scholar
Epstein, F.H., Yang, Z., Gilson, W.D., Berr, S.S., Kramer, C.M. & French, B.A. (2002). MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magn Reson Med 48, 399403.CrossRefGoogle ScholarPubMed
Gaasch, W.H. & Zile, M.R. (2004). Left ventricular diastolic dysfunction and diastolic heart failure. Annu Rev Med 55, 373394.CrossRefGoogle ScholarPubMed
Garot, J., Lima, J.A., Gerber, B.L., Sampath, S., Wu, K.C., Bluemke, D.A., Prince, J.L. & Osman, N.F. (2004). Spatially resolved imaging of myocardial function with strain-encoded MR: Comparison with delayed contrast-enhanced MR imaging after myocardial infarction. Radiology 233, 596602.CrossRefGoogle ScholarPubMed
Goldsmith, E.C., Carver, W., McFadden, A., Goldsmith, J.G., Price, R.L., Sussman, M., Lorell, B.H., Cooper, G. & Borg, T.K. (2003). Integrin shedding as a mechanism of cellular adaptation during cardiac growth. Am J Physiol 284, H2227H2234.Google ScholarPubMed
Goldsmith, E.C., Hoffman, A., Morales, M.O., Potts, J.D., Price, R.L., McFadden, A., Rice, M. & Borg, T.K. (2004). Organization of fibroblasts in the heart. Dev Dyn 230, 787794.CrossRefGoogle ScholarPubMed
Gotte, M.J., van Rossum, A.C., Twisk, J.W.R., Kuijer, J.P.A., Marcus, J.T. & Visser, C.A. (2001). Quantification of regional contractile function after infarction: Strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J Am Coll Cardiol 37, 808817.CrossRefGoogle ScholarPubMed
Graham, H.K., Horn, M. & Trafford, A.W. (2008). Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiol 194, 321.CrossRefGoogle ScholarPubMed
Graham, H.K. & Trafford, A.W. (2007). Spatial disruption and enhanced degradation of collagen with the transition from compensated ventricular hypertrophy to symptomatic congestive heart failure. Am J Physiol 292, H1364H1372.Google ScholarPubMed
Hasenfuss, G. (1998). Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39, 6076.CrossRefGoogle ScholarPubMed
Heineke, J. & Molkentin, J.D. (2006). Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7, 589600.CrossRefGoogle ScholarPubMed
Hogg, K., Swedberg, K. & McMurray, J. (2004). Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol 43, 317327.CrossRefGoogle ScholarPubMed
Hunter, P.J. & Smaill, B.H. (1988). The analysis of cardiac function: A continuum approach. Prog Biophys Mol Biol 52, 101164.CrossRefGoogle ScholarPubMed
Hutchinson, K.R., Stewart, J.A. Jr. & Lucchesi, P.A. (2010). Extracellular matrix remodeling during the progression of volume overload-induced heart failure. J Mol Cell Cardiol 48, 564569.CrossRefGoogle ScholarPubMed
Iwanaga, Y., Aoyama, T., Kihara, Y., Onozawa, Y., Yoneda, T. & Sasayama, S. (2002). Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. J Am Coll Cardiol 39, 13841391.CrossRefGoogle ScholarPubMed
Jackson, G., Gibbs, C.R., Davies, M.K. & Lip, G.Y. (2000). ABC of heart failure. Pathophysiology. BMJ 320, 167170.CrossRefGoogle ScholarPubMed
Jalil, J.E., Doering, C.W., Janicki, J.S., Pick, R., Shroff, S.G. & Weber, K.T. (1989). Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64, 10411050.CrossRefGoogle ScholarPubMed
Janicki, J.S. & Brower, G.L. (2002). The role of myocardial fibrillar collagen in ventricular remodeling and function. J Card Failure 8, S319–325.CrossRefGoogle ScholarPubMed
Janicki, J.S., Brower, G.L., Gardner, J.D., Chancey, A.L. & Stewart, J.A. Jr. (2004). The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Failure Rev 9, 3342.CrossRefGoogle ScholarPubMed
Jessup, M. & Brozena, S. (2003). Heart failure. N Engl J Med 348, 20072018.CrossRefGoogle ScholarPubMed
Judd, J.T. & Wexler, B.C. (1975). Prolyl hydroxylase and collagen metabolism after experimental mycardial infarction. Am J Physiol 228, 212216.CrossRefGoogle ScholarPubMed
Jugdutt, B.I. (2003). Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough? Circulation 108, 13951403.CrossRefGoogle Scholar
Jugdutt, B.I. (2004). Extracellular matrix and cardiac remodeling. In Interstitial Fibrosis in Heart Failure, Villarreal, F.J. (Ed.), pp. 2355. New York: Springer.Google Scholar
Jugdutt, B.I., Joljart, M.J. & Khan, M.I. (1996). Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models. Circulation 94, 94101.CrossRefGoogle ScholarPubMed
Kagan, H.M. & Trackman, P.C. (1991). Properties and function of lysyl oxidase. Am J Respir Cell Mol Biol 5, 206210.CrossRefGoogle ScholarPubMed
Kanzaki, H., Nakatani, S., Yamada, N., Urayama, S., Miyatake, K. & Kitakaze, M. (2006). Impaired systolic torsion in dilated cardiomyopathy: Reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res Cardiol 101, 465470.CrossRefGoogle ScholarPubMed
Kim, Y.K., Mankad, S., Kim, S.J., Takagi, G., Tamura, T., Gerdes, A.M., Bishop, S.P. & Kramer, C.M. (2003). Adding angiotensin II type 1 receptor blockade to angiotensin-converting enzyme inhibition limits myocyte remodeling after myocardial infarction. J Card Failure 9, 238245.CrossRefGoogle ScholarPubMed
Kobayashi, M., Machida, N., Tanaka, R. & Yamane, Y. (2008). Effects of beta-blocker on left ventricular remodeling in rats with volume overload cardiac failure. J Vet Med Sci 70, 12311237.CrossRefGoogle ScholarPubMed
Kohl, P., Camelliti, P., Burton, F.L. & Smith, G.L. (2005). Electrical coupling of fibroblasts and myocytes: Relevance for cardiac propagation. J Electrocardiol 38, 4550.CrossRefGoogle ScholarPubMed
Konstam, M.A., Kronenberg, M.W., Rousseau, M.F., Udelson, J.E., Melin, J., Stewart, D., Dolan, N., Edens, T.R., Ahn, S. & Kinan, D. (1993). Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation 88, 22772283.CrossRefGoogle ScholarPubMed
Konstam, M.A., Rousseau, M.F., Kronenberg, M.W., Udelson, J.E., Melin, J., Stewart, D., Dolan, N., Edens, T.R., Ahn, S. & Kinan, D. (1992). Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation 86, 431438.CrossRefGoogle ScholarPubMed
Kraitchman, D.L., Young, A.A., Bloomgarden, D.C., Fayad, Z.A., Dougherty, L., Ferrari, V.A., Boston, R.C. & Axel, L. (1998). Integrated MRI assessment of regional function and perfusion in canine myocardial infarction. Magn Reson Med 40, 311326.CrossRefGoogle ScholarPubMed
Kramer, C.M., Ferrari, V.A., Rogers, W.J., Theobald, T.M., Nance, M.L., Axel, L. & Reichek, N. (1996a). Angiotensin-converting enzyme inhibition limits dysfunction in adjacent noninfarcted regions during left ventricular remodeling. J Am Coll Cardiol 27, 211217.CrossRefGoogle ScholarPubMed
Kramer, C.M., Lima, J.A., Reichek, N., Ferrari, V.A., Llaneras, M.R., Palmon, L.C., Yeh, I.T., Tallant, B. & Axel, L. (1993). Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 88, 12791288.CrossRefGoogle ScholarPubMed
Kramer, C.M., Rogers, W.J., Theobald, T.M., Power, T.P., Petruolo, S. & Reichek, N. (1996b). Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation 94, 660666.CrossRefGoogle ScholarPubMed
Krayenbuehl, H.P., Hess, O.M., Monrad, E.S., Schneider, J., Mall, G. & Turina, M. (1989). Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 79, 744755.CrossRefGoogle ScholarPubMed
Krenning, G., Zeisberg, E.M. & Kalluri, R. (2010). The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225, 631637.CrossRefGoogle ScholarPubMed
Lam, C.S., Donal, E., Kraigher-Krainer, E. & Vasan, R.S. (2011). Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail 13, 1828.CrossRefGoogle ScholarPubMed
Laurent, G.J. (1987). Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252, C1C9.CrossRefGoogle ScholarPubMed
LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B. & Hunter, P.J. (1995a). Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol 269, H571H582.Google ScholarPubMed
LeGrice, I.J., Takayama, Y. & Covell, J.W. (1995b). Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 77, 182193.CrossRefGoogle ScholarPubMed
Lemarié, C.A., Tharaux, P.L. & Lehoux, S. (2010). Extracellular matrix alterations in hypertensive vascular remodeling. J Mol Cell Cardiol 48, 433439.CrossRefGoogle ScholarPubMed
Levy, B.I. (2006). Microvascular plasticity and experimental heart failure. Hypertension 47, 827829.CrossRefGoogle ScholarPubMed
Lijnen, P. & Petrov, V. (1999). Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. J Mol Cell Cardiol 31, 949970.CrossRefGoogle ScholarPubMed
Litwin, S.E., Litwin, C.M., Raya, T.E., Warner, A.L. & Goldman, S. (1991). Contractility and stiffness of noninfarcted myocardium after coronary ligation in rats. Effects of chronic angiotensin converting enzyme inhibition. Circulation 83, 10281037.CrossRefGoogle ScholarPubMed
Liu, Z., Hilbelink, D.R., Crockett, W.B. & Gerdes, A.M. (1991). Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ Res 69, 5258.CrossRefGoogle ScholarPubMed
Lopez, B., Gonzalez, A., Querejeta, R., Larman, M. & Diez, J. (2006). Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol 48, 8996.CrossRefGoogle Scholar
Lopez, B., Querejeta, R., Gonzalez, A., Beaumont, J., Larman, M. & Diez, J. (2009). Impact of treatment on myocardial lysyl oxidase expression and collagen cross-linking in patients with heart failure. Hypertension 53, 236242.CrossRefGoogle ScholarPubMed
Manabe, I., Shindo, T. & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91, 11031113.CrossRefGoogle ScholarPubMed
Mann, D.L. & Bristow, M.R. (2005). Mechanisms and models in heart failure: The biomechanical model and beyond. Circulation 111, 28372849.CrossRefGoogle ScholarPubMed
Marcus, J.T., Gotte, M.J., Van Rossum, A.C., Kuijer, J.P., Heethaar, R.M., Axel, L. & Visser, C.A. (1997). Myocardial function in infarcted and remote regions early after infarction in man: Assessment by magnetic resonance tagging and strain analysis. Magn Reson Med 38, 803810.CrossRefGoogle ScholarPubMed
Marijianowski, M.M., Teeling, P. & Becker, A.E. (1997). Remodeling after myocardial infarction in humans is not associated with interstitial fibrosis of noninfarcted myocardium. J Am Coll Cardiol 30, 7682.CrossRefGoogle Scholar
Martos, R., Baugh, J., Ledwidge, M., O'Loughlin, C., Conlon, C., Patle, A., Donnelly, S.C. & McDonald, K. (2007). Diastolic heart failure: Evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 115, 888895.CrossRefGoogle ScholarPubMed
Matsusaka, H., Ide, T., Matsushima, S., Ikeuchi, M., Kubota, T., Sunagawa, K., Kinugawa, S. & Tsutsui, H. (2006). Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47, 711717.CrossRefGoogle ScholarPubMed
McCormick, R.J., Musch, T.I., Bergman, B.C. & Thomas, D.P. (1994). Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Physiol 266, H354H359.Google ScholarPubMed
McKay, R.G., Pfeffer, M.A., Pasternak, R.C., Markis, J.E., Come, P.C., Nakao, S., Alderman, J.D., Ferguson, J.J., Safian, R.D. & Grossman, W. (1986). Left ventricular remodeling after myocardial infarction: A corollary to infarct expansion. Circulation 74, 693702.CrossRefGoogle ScholarPubMed
Medugorac, I. & Jacob, R. (1983). Characterisation of left ventricular collagen in the rat. Cardiovasc Res 17, 1521.CrossRefGoogle ScholarPubMed
Meszaros, J.G., Gonzalez, A.M., Endo-Mochizuki, Y., Villegas, S., Villarreal, F. & Brunton, L.L. (2000). Identification of G protein-coupled signaling pathways in cardiac fibroblasts: Cross talk between G(q) and G(s). Am J Physiol 278, C154C162.CrossRefGoogle Scholar
Michel, J.B., Salzmann, J.L., Ossondo Nlom, M., Bruneval, P., Barres, D. & Camilleri, J.P. (1986). Morphometric analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy. Basic Res Cardiol 81, 142154.CrossRefGoogle ScholarPubMed
Milanez, M.C., Gomes, M.G., Vassallo, D.V. & Mill, J.G. (1997). Effects of captopril on interstitial collagen in the myocardium after infarction in rats. J Card Failure 3, 189197.CrossRefGoogle ScholarPubMed
Mirsky, I., Pfeffer, J.M., Pfeffer, M.A. & Braunwald, E. (1983). The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hypertensive rat. Circ Res 53, 767778.CrossRefGoogle ScholarPubMed
Murray, D.B., Gardner, J.D., Brower, G.L. & Janicki, J.S. (2008). Effects of nonselective endothelin-1 receptor antagonism on cardiac mast cell-mediated ventricular remodeling in rats. Am J Physiol 294, H1251H1257.Google ScholarPubMed
Namba, T., Tsutsui, H., Tagawa, H., Takahashi, M., Saito, K., Kozai, T., Usui, M., Imanaka-Yoshida, K., Imaizumi, T. & Takeshita, A. (1997). Regulation of fibrillar collagen gene expression and protein accumulation in volume-overloaded cardiac hypertrophy. Circulation 95, 24482454.CrossRefGoogle ScholarPubMed
Nemoto, S., Hamawaki, M., De Freitas, G. & Carabello, B.A. (2002). Differential effects of the angiotensin-converting enzyme inhibitor lisinopril versus the beta-adrenergic receptor blocker atenolol on hemodynamics and left ventricular contractile function in experimental mitral regurgitation. J Am Coll Cardiol 40, 149154.CrossRefGoogle ScholarPubMed
Nielsen, P.M., Le Grice, I.J., Smaill, B.H. & Hunter, P.J. (1991). Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260, H1365H1378.Google ScholarPubMed
Norris, R.A., Borg, T.K., Butcher, J.T., Baudino, T.A., Banerjee, I. & Markwald, R.R. (2008). Neonatal and adult cardiovascular pathophysiological remodeling and repair: Developmental role of periostin. Ann NY Acad Sci 1123, 3040.CrossRefGoogle ScholarPubMed
Norris, R.A., Damon, B., Mironov, V., Kasyanov, V., Ramamurthi, A., Moreno-Rodriguez, R., Trusk, T., Potts, J.D., Goodwin, R.L., Davis, J., Hoffman, S., Wen, X., Sugi, Y., Kern, C.B., Mjaatvedt, C.H., Turner, D.K., Oka, T., Conway, S.J., Molkentin, J.D., Forgacs, G. & Markwald, R.R. (2007). Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101, 695711.CrossRefGoogle ScholarPubMed
Oka, T., Xu, J., Kaiser, R.A., Melendez, J., Hambleton, M., Sargent, M.A., Lorts, A., Brunskill, E.W., Dorn, G.W. 2nd, Conway, S.J., Aronow, B.J., Robbins, J. & Molkentin, J.D. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 101, 313321.CrossRefGoogle ScholarPubMed
Omens, J.H., May, K.D. & McCulloch, A.D. (1991). Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am J Physiol 261, H918H928.Google ScholarPubMed
Opie, L.H., Commerford, P.J., Gersh, B.J. & Pfeffer, M.A. (2006). Controversies in ventricular remodelling. Lancet 367, 356367.CrossRefGoogle ScholarPubMed
Owen, A.A. & Spinale, F.G. (2011). Myocardial basis for heart failure: Role of the cardiac interstitium. In Heart Failure: A Companion to Braunwald's Heart Disease, Mann, D.L. (Ed.), pp. 7384. St. Louis, MO: Elsevier Saunders.CrossRefGoogle Scholar
Panizo, A., Pardo, J., Hernandez, M., Galindo, M.F., Cenarruzabeitia, E. & Diez, J. (1995). Quinapril decreases myocardial accumulation of extracellular matrix components in spontaneously hypertensive rats. Am J Hypertens 8, 815822.CrossRefGoogle ScholarPubMed
Peters, J., Farrenkopf, R., Clausmeyer, S., Zimmer, J., Kantachuvesiri, S., Sharp, M.G. & Mullins, J.J. (2002). Functional significance of prorenin internalization in the rat heart. Circ Res 90, 11351141.CrossRefGoogle ScholarPubMed
Peterson, J.T., Hallak, H., Johnson, L., Li, H., O'Brien, P.M., Sliskovic, D.R., Bocan, T.M., Coker, M.L., Etoh, T. & Spinale, F.G. (2001). Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103, 23032309.CrossRefGoogle Scholar
Petrich, B.G. & Wang, Y. (2004). Stress-activated MAP kinases in cardiac remodeling and heart failure; new insights from transgenic studies. Trends Cardiovas Med 14, 5055.CrossRefGoogle ScholarPubMed
Pfeffer, J.M. & Pfeffer, M.A. (1988). Angiotensin converting enzyme inhibition and ventricular remodeling in heart failure. Am J Med 84, 3744.CrossRefGoogle ScholarPubMed
Pfeffer, J.M., Pfeffer, M.A. & Braunwald, E. (1985a). Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57, 8495.CrossRefGoogle Scholar
Pfeffer, J.M., Pfeffer, M.A., Fishbein, M.C. & Frohlich, E.D. (1979). Cardiac function and morphology with aging in the spontaneously hypertensive rat. Am J Physiol 237, H461H468.Google ScholarPubMed
Pfeffer, M.A. & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81, 11611172.CrossRefGoogle ScholarPubMed
Pfeffer, M.A., Pfeffer, J.M., Steinberg, C. & Finn, P. (1985b). Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation 72, 406412.CrossRefGoogle ScholarPubMed
Phan, T.T., Shivu, G.N., Abozguia, K., Gnanadevan, M., Ahmed, I. & Frenneaux, M. (2009). Left ventricular torsion and strain patterns in heart failure with normal ejection fraction are similar to age-related changes. Eur J Echocard 10, 793800.CrossRefGoogle ScholarPubMed
Piacentini, L., Gray, M., Honbo, N.Y., Chentoufi, J., Bergman, M. & Karliner, J.S. (2000). Endothelin-1 stimulates cardiac fibroblast proliferation through activation of protein kinase C. J Mol Cell Cardiol 32, 565576.CrossRefGoogle ScholarPubMed
Polyakova, V., Hein, S., Kostin, S., Ziegelhoeffer, T. & Schaper, J. (2004). Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol 44, 16091618.CrossRefGoogle ScholarPubMed
Pope, A.J., Sands, G.B., Smaill, B.H. & LeGrice, I.J. (2008). Three-dimensional transmural organization of perimysial collagen in the heart. Am J Physiol 295, H1243H1252.Google ScholarPubMed
Porter, K.E. & Turner, N.A. (2009). Cardiac fibroblasts: At the heart of myocardial remodeling. Pharmacol Ther 123, 255278.CrossRefGoogle ScholarPubMed
Prockop, D.J. & Kivirikko, K.I. (1995). Collagens: Molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64, 403434.CrossRefGoogle ScholarPubMed
Roberts, D.D. & Lau, L.F. (2011). Matricellular proteins. In The Extracellular Matrix: An Overview, Mecham, R.P. (Ed.), pp. 369413. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Robinson, T.F., Cohen-Gould, L. & Factor, S.M. (1983). Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures. Lab Invest 49, 482498.Google ScholarPubMed
Ross, R.S. & Borg, T.K. (2001). Integrins and the myocardium. Circ Res 88, 11121119.CrossRefGoogle ScholarPubMed
Rossi, M.A. (1998). Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens 16, 10311041.CrossRefGoogle ScholarPubMed
Ruzicka, M., Keeley, F.W. & Leenen, F.H. (1994). The renin-angiotensin system and volume overload-induced changes in cardiac collagen and elastin. Circulation 90, 19891996.CrossRefGoogle ScholarPubMed
Ruzicka, M. & Leenen, F.H. (1993). Renin-angiotensin system and minoxidil-induced cardiac hypertrophy in rats. Am J Physiol 265, H1551H1556.Google ScholarPubMed
Ruzicka, M. & Leenen, F.H. (1995). Relevance of blockade of cardiac and circulatory angiotensin-converting enzyme for the prevention of volume overload-induced cardiac hypertrophy. Circulation 91, 1619.CrossRefGoogle ScholarPubMed
Ruzicka, M., Skarda, V. & Leenen, F.H. (1995). Effects of ACE inhibitors on circulating versus cardiac angiotensin II in volume overload-induced cardiac hypertrophy in rats. Circulation 92, 35683573.CrossRefGoogle ScholarPubMed
Ryan, T.D., Rothstein, E.C., Aban, I., Tallaj, J.A., Husain, A., Lucchesi, P.A. & Dell'Italia, L.J. (2007). Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J Am Coll Cardiol 49, 811821.CrossRefGoogle ScholarPubMed
Sakata, Y., Yamamoto, K., Mano, T., Nishikawa, N., Yoshida, J., Hori, M., Miwa, T. & Masuyama, T. (2004). Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: Its inhibition as a primary effect of Angiotensin-converting enzyme inhibitor. Circulation 109, 21432149.CrossRefGoogle ScholarPubMed
Sands, G.B., Gerneke, D.A., Hooks, D.A., Green, C.R., Smaill, B.H. & Legrice, I.J. (2005). Automated imaging of extended tissue volumes using confocal microscopy. Microsc Res Tech 67, 227239.CrossRefGoogle ScholarPubMed
Sato, S., Ashraf, M., Millard, R.W., Fujiwara, H. & Schwartz, A. (1983). Connective tissue changes in early ischemia of porcine myocardium: An ultrastructural study. J Mol Cell Cardiol 15, 261275.CrossRefGoogle ScholarPubMed
Schellenbaum, G.D., Rea, T.D., Heckbert, S.R., Smith, N.L., Lumley, T., Roger, V.L., Kitzman, D.W., Taylor, H.A., Levy, D. & Psaty, B.M. (2004). Survival associated with two sets of diagnostic criteria for congestive heart failure. Am J Epidemiol 160, 628635.CrossRefGoogle ScholarPubMed
Schmid, H., O'Callaghan, P., Nash, M.P., Lin, W., LeGrice, I.J., Smaill, B.H., Young, A.A. & Hunter, P.J. (2008). Myocardial material parameter estimation: a non-homogeneous finite element study from simple shear tests. Biomech Model Mechanobiol 7, 161173.CrossRefGoogle ScholarPubMed
Schwarz, F., Flameng, W., Schaper, J. & Hehrlein, F. (1978). Correlation between myocardial structure and diastolic properties of the heart in chronic aortic valve disease: Effects of corrective surgery. Am J Cardiol 42, 895903.CrossRefGoogle ScholarPubMed
Sharpe, N. (1991). Early preventive treatment of left ventricular dysfunction following myocardial infarction: Optimal timing and patient selection. Am J Cardiol 68, 64D69D.CrossRefGoogle ScholarPubMed
Slama, M., Ahn, J., Varagic, J., Susic, D. & Frohlich, E.D. (2004). Long-term left ventricular echocardiographic follow-up of SHR and WKY rats: Effects of hypertension and age. Am J Physiol 286, H181H185.Google ScholarPubMed
Snider, P., Standley, K.N., Wang, J., Azhar, M., Doetschman, T. & Conway, S.J. (2009). Origin of cardiac fibroblasts and the role of periostin. Circ Res 105, 934947.CrossRefGoogle ScholarPubMed
Souders, C.A., Bowers, S.L. & Baudino, T.A. (2009). Cardiac fibroblast: The renaissance cell. Circ Res 105, 11641176.CrossRefGoogle ScholarPubMed
Spinale, F.G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol Rev 87, 12851342.CrossRefGoogle ScholarPubMed
Spotnitz, H.M., Spotnitz, W.D., Cottrell, T.S., Spiro, D. & Sonnenblick, E.H. (1974). Cellular basis for volume related wall thickness changes in the rat left ventricle. J Mol Cell Cardiol 6, 317331.CrossRefGoogle ScholarPubMed
St. John Sutton, M., Pfeffer, M.A., Plappert, T., Rouleau, J.L., Moye, L.A., Dagenais, G.R., Lamas, G.A., Klein, M., Sussex, B. & Goldman, S. (1994). Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 89, 6875.CrossRefGoogle ScholarPubMed
St. John Sutton, M.G. & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation 101, 29812988.CrossRefGoogle Scholar
Sun, Y. (2009). Myocardial repair/remodelling following infarction: Roles of local factors. Cardiovasc Res 81, 482490.CrossRefGoogle ScholarPubMed
Sun, Y. (2010). Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. J Mol Cell Cardiol 48, 483489.CrossRefGoogle ScholarPubMed
Sun, Y. & Weber, K.T. (1996). Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28, 851858.CrossRefGoogle ScholarPubMed
Sun, Y., Zhang, J., Zhang, J.Q. & Weber, K.T. (2001). Renin expression at sites of repair in the infarcted rat heart. J Mol Cell Cardiol 33, 9951003.CrossRefGoogle ScholarPubMed
Susic, D., Varagic, J. & Frohlich, E.D. (1999). Pharmacologic agents on cardiovascular mass, coronary dynamics and collagen in aged spontaneously hypertensive rats. J Hypertens 17, 12091215.CrossRefGoogle ScholarPubMed
Sussman, M.A., McCulloch, A. & Borg, T.K. (2002). Dance band on the Titanic: Biomechanical signaling in cardiac hypertrophy. Circ Res 91, 888898.CrossRefGoogle ScholarPubMed
Takahashi, S., Barry, A.C. & Factor, S.M. (1990). Collagen degradation in ischaemic rat hearts. Biochem J 265, 233241.CrossRefGoogle ScholarPubMed
Takayama, Y., Costa, K.D. & Covell, J.W. (2002). Contribution of laminar myofiber architecture to load-dependent changes in mechanics of LV myocardium. Am J Physiol 282, H1510H1520.Google ScholarPubMed
Thampatty, B.P. & Wang, J.H-C. (2008). Mechanobiology of fibroblasts. In Mechanosensitive Ion Channels, Kamkin, A. & Kiseleva, I. (Eds.), pp. 351378. New York: Springer.CrossRefGoogle Scholar
Theroux, P., Ross, J. Jr., Franklin, D., Covell, J.W., Bloor, C.M. & Sasayama, S. (1977). Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ Res 40, 158165.CrossRefGoogle ScholarPubMed
Thiedemann, K.U., Holubarsch, C., Medugorac, I. & Jacob, R. (1983). Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Res Cardiol 78, 140155.CrossRefGoogle ScholarPubMed
Tibayan, F.A., Lai, D.T., Timek, T.A., Dagum, P., Liang, D., Zasio, M.K., Daughters, G.T., Miller, D.C. & Ingels, N.B. Jr. (2003). Alterations in left ventricular curvature and principal strains in dilated cardiomyopathy with functional mitral regurgitation. J Heart Valve Dis 12, 292299.Google ScholarPubMed
Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R.A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3, 349363.CrossRefGoogle ScholarPubMed
Trippodo, N.C. & Frohlich, E.D. (1981). Similarities of genetic (spontaneous) hypertension: Man and rat. Circ Res 48, 309319.CrossRefGoogle Scholar
van den Borne, S.W., Diez, J., Blankesteijn, W.M., Verjans, J., Hofstra, L. & Narula, J. (2010). Myocardial remodeling after infarction: The role of myofibroblasts. Nat Rev Cardiol 7, 3037.CrossRefGoogle ScholarPubMed
Villarreal, F.J., Lew, W.Y., Waldman, L.K. & Covell, J.W. (1991). Transmural myocardial deformation in the ischemic canine left ventricle. Circ Res 68, 368381.CrossRefGoogle ScholarPubMed
Volders, P.G., Willems, I.E., Cleutjens, J.P., Arends, J.W., Havenith, M.G. & Daemen, M.J. (1993). Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 25, 13171323.CrossRefGoogle ScholarPubMed
Voros, S., Yang, Z., Bove, C.M., Gilson, W.D., Epstein, F.H., French, B.A., Berr, S.S., Bishop, S.P., Conaway, M.R., Matsubara, H., Carey, R.M. & Kramer, C.M. (2006). Interaction between AT1 and AT2 receptors during postinfarction left ventricular remodeling. Am J Physiol 290, H1004H1010.Google ScholarPubMed
Wakeno, M., Minamino, T., Seguchi, O., Okazaki, H., Tsukamoto, O., Okada, K., Hirata, A., Fujita, M., Asanuma, H., Kim, J., Komamura, K., Takashima, S., Mochizuki, N. & Kitakaze, M. (2006). Long-term stimulation of adenosine A2b receptors begun after myocardial infarction prevents cardiac remodeling in rats. Circulation 114, 19231932.CrossRefGoogle ScholarPubMed
Waldman, L.K., Nosan, D., Villarreal, F. & Covell, J.W. (1988). Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63, 550562.CrossRefGoogle ScholarPubMed
Wang, J., Khoury, D.S., Yue, Y., Torre-Amione, G. & Nagueh, S.F. (2008). Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J 29, 12831289.CrossRefGoogle ScholarPubMed
Wang, J. & Nagueh, S.F. (2009). Current perspectives on cardiac function in patients with diastolic heart failure. Circulation 119, 11461157.CrossRefGoogle ScholarPubMed
Wang, V.Y., Nash, M.P., LeGrice, I.J., Young, A.A., Smaill, B.H. & Hunter, P.J. (2011). Mathematical models of cardiac structure and function: Mechanistic insights from models of heart failure. In Cardiac Mechano-Electric Coupling and Arrhythmias, Kohl, P., Sachs, F. & Franz, M.R. (Eds.), pp. 241250. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Wang, Y. (2007). Mitogen-activated protein kinases in heart development and diseases. Circulation 116, 14131423.CrossRefGoogle ScholarPubMed
Weber, K.T. (2000). Fibrosis and hypertensive heart disease. Curr Opin Cardiol 15, 264272.CrossRefGoogle ScholarPubMed
Weber, K.T. & Brilla, C.G. (1991). Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83, 18491865.CrossRefGoogle ScholarPubMed
Weber, K.T., Pick, R., Janicki, J.S., Gadodia, G. & Lakier, J.B. (1988). Inadequate collagen tethers in dilated cardiopathy. Am Heart J 116, 16411646.CrossRefGoogle ScholarPubMed
Weber, K.T., Pick, R., Silver, M.A., Moe, G.W., Janicki, J.S., Zucker, I.H. & Armstrong, P.W. (1990). Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 82, 13871401.CrossRefGoogle ScholarPubMed
Wei, S., Chow, L.T., Shum, I.O., Qin, L. & Sanderson, J.E. (1999). Left and right ventricular collagen type I/III ratios and remodeling post-myocardial infarction. J Card Failure 5, 117126.CrossRefGoogle ScholarPubMed
Whittaker, P., Boughner, D.R. & Kloner, R.A. (1991). Role of collagen in acute myocardial infarct expansion. Circulation 84, 21232134.CrossRefGoogle ScholarPubMed
Willems, I.E., Havenith, M.G., De Mey, J.G. & Daemen, M.J. (1994). The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145, 868875.Google ScholarPubMed
Yarbrough, W.M., Mukherjee, R., Brinsa, T.A., Dowdy, K.B., Scott, A.A., Escobar, G.P., Joffs, C., Lucas, D.G., Crawford, F.A. Jr. & Spinale, F.G. (2003). Matrix metalloproteinase inhibition modifies left ventricular remodeling after myocardial infarction in pigs. J Thorac Cardiovasc Surg 125, 602610.CrossRefGoogle ScholarPubMed
Young, A.A. (1999). Model tags: Direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images. Med Image Anal 3, 361372.CrossRefGoogle ScholarPubMed
Yu, C.M., Tipoe, G.L., Lai, K.W.H. & Lau, C.P. (2001). Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol 38, 12071215.CrossRefGoogle ScholarPubMed
Zamilpa, R. & Lindsey, M.L. (2010). Extracellular matrix turnover and signaling during cardiac remodeling following MI: Causes and consequences. J Mol Cell Cardiol 48, 558563.CrossRefGoogle ScholarPubMed
Zeisberg, E.M. & Kalluri, R. (2010). Origins of cardiac fibroblasts. Circ Res 107, 13041312.CrossRefGoogle ScholarPubMed
Zhao, M.J., Zhang, H., Robinson, T.F., Factor, S.M., Sonnenblick, E.H. & Eng, C. (1987). Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (“stunned”) but viable myocardium. J Am Coll Cardiol 10, 13221334.CrossRefGoogle ScholarPubMed
Zheng, J., Chen, Y., Pat, B., Dell'Italia, L.A., Tillson, M., Dillon, A.R., Powell, P.C., Shi, K., Shah, N., Denney, T., Husain, A. & Dell'Italia, L.J. (2009). Microarray identifies extensive downregulation of noncollagen extracellular matrix and profibrotic growth factor genes in chronic isolated mitral regurgitation in the dog. Circulation 119, 20862095.CrossRefGoogle ScholarPubMed
Zimmerman, S.D., Thomas, D.P., Velleman, S.G., Li, X., Hansen, T.R. & McCormick, R.J. (2001). Time course of collagen and decorin changes in rat cardiac and skeletal muscle post-MI. Am J Physiol 281, H1816H1822.Google ScholarPubMed