Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T19:13:26.841Z Has data issue: false hasContentIssue false

STEM Tomography of Au Helical Assemblies

Published online by Cambridge University Press:  25 June 2021

Kamil Sobczak*
Affiliation:
Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
Sylwia Turczyniak-Surdacka
Affiliation:
Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
Wiktor Lewandowski
Affiliation:
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
Maciej Baginski
Affiliation:
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
Martyna Tupikowska
Affiliation:
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
Guillermo González-Rubio
Affiliation:
CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
Michał Wójcik
Affiliation:
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
Anna Carlsson
Affiliation:
Thermo Fisher Scientific, Materials & Structural Analysis, Eindhoven, The Netherlands
Mikołaj Donten
Affiliation:
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
*
*Author for correspondence: Kamil Sobczak, E-mail: ksobczak@cnbc.uw.edu.pl
Get access

Abstract

Composite, helical nanostructures formed using cooperative interactions of liquid crystals and Au nanoparticles were studied using a scanning transmission electron microscopy (STEM) mode. The investigated helical assemblies exhibit long-range hierarchical order across length scales, as a result of the crystallization (freezing) directed growth mechanism of nanoparticle-coated twisted nanoribbons and their ability to form organized bundles. Here, STEM methods were used to reproduce the 3D structure of the Au nanoparticle double helix.

Type
The XVIIth International Conference on Electron Microscopy (EM2020)
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzin, N, Guzmán, O, Gutiérrez, O, Hirst, LS & Ghosh, S (2018). Free-energy model for nanoparticle self-assembly by liquid crystal sorting. Phys Rev E 97, 062704. doi:10.1103/PhysRevE.97.062704CrossRefGoogle ScholarPubMed
Bagiński, M, Tupikowska, M, González-Rubio, G, Wójcik, M & Lewandowski, W (2020). Shaping liquid crystals with gold nanoparticles: Helical assemblies with tunable and hierarchical structures via thin-film cooperative interactions. Adv Mater 32, 1904581. doi:10.1002/adma.201904581CrossRefGoogle ScholarPubMed
Dempster, AP, Laird, NM & Rubin, DB (1977). Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological) 39, 138.Google Scholar
Downing, CA, Robinson, MG & Portnoi, ME (2016). Nanohelices as superlattices: Bloch oscillations and electric dipole transitions. Phys Rev B 94, 155306. doi:10.1103/PhysRevB.94.155306CrossRefGoogle Scholar
Feng, X, Marcon, V, Pisula, W, Hansen, MR, Kirkpatrick, J, Grozema, F, Andrienko, D, Kremer, K & Muellen, K (2009). Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat Mater 8, 421426. doi:10.1038/nmat2427CrossRefGoogle ScholarPubMed
Gao, Y, Hao, J, Liu, J, Liang, Y, Du, F, Hu, J & Ju, Y (2019). Imprinting supramolecular chirality on silica from natural triterpenoid-regulated helical ribbons. Mater Chem Front 3, 308313. doi:10.1039/C8QM00498FCrossRefGoogle Scholar
Gilbert, P (1972). Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36, 105117.CrossRefGoogle ScholarPubMed
Hentschel, M, Schäferling, M, Duan, X, Giessen, H & Liu, N (2017). Chiral plasmonics. Sci Adv 3, e1602735, 1–12. doi:10.1126/sciadv.1602735CrossRefGoogle ScholarPubMed
Jin, Q, Zhang, L, Cao, H, Wang, T, Zhu, X, Jian, J & Liu, M (2011). Self-assembly of copper(II) ion-mediated nanotube and its supramolecular chiral catalytic behavior. Langmuir 27, 1384713853. doi:10.1021/la203110zCrossRefGoogle ScholarPubMed
Kim, Y, Yeom, B, Arteaga, O, Yoo, SJ, Lee, SG, Kim, JG & Kotov, NA (2016). Nat Mater 15, 461. doi:10.1038/nmat4525CrossRefGoogle Scholar
Lan, X & Wang, Q (2016). Self-assembly of chiral plasmonic nanostructures. Adv Mater 28, 1049910507. doi:10.1002/adma.201600697CrossRefGoogle ScholarPubMed
Lu, J, Gu, W, Wei, J, Zhang, W, Zhang, Z, Yu, Y, Zhou, N & Zhu, X (2016). Novel planar chiral dopants with high helical twisting power and structure-dependent functions. J Mater Chem C 4, 95769580. doi:10.1039/C6TC02557ACrossRefGoogle Scholar
Radermacher, M (1992). Weighted back-projection methods. In Electron Tomography, Frank, J (Ed.). Boston, MA: Springer. doi:10.1007/978-1-4757-2163-8_5Google Scholar
Riahinasab, ST, Keshavarz, A, Melton, CN, Elbaradei, A, Warren, GI, Selinger, RLB, Stokes, BJ & Hirst, LS (2019). Nanoparticle-based hollow microstructures formed by two-stage nematic nucleation and phase separation. Nat Commun 10, 894. doi:10.1038/s41467-019-08702-3CrossRefGoogle ScholarPubMed
Tu, T, Fang, W, Bao, X, Li, X & Dotz, KH (2011). Visual chiral recognition through enantioselective metallogel collapsing: Synthesis, characterization, and application of platinum-steroid low-molecular-mass gelators. Angew Chem Int Ed 50, 66016605. doi:10.1002/anie.201100620CrossRefGoogle ScholarPubMed
Yashima, E, Ousaka, N, Taura, D, Shimomura, K, Ikai, T & Maeda, T (2016). Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev 116, 1375213990. doi:10.1021/acs.chemrev.6b00354CrossRefGoogle ScholarPubMed
Yuan, Y, Martinez, A, Senyuk, B, Tasinkevych, M & Smalyukh, II (2016). Chiral liquid crystal colloids. Nat Mater 17, 7179. doi:10.1038/nmat5032CrossRefGoogle Scholar

Sobczak et al. supplementary material

Sobczak et al. supplementary material

Download Sobczak et al. supplementary material(Video)
Video 4.6 MB