Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T19:23:31.931Z Has data issue: false hasContentIssue false

Stainless Steel 304 Micro-pillar Mechanical Response to Ion Irradiation and Helium Implantation Under Transmission Electron Microscopy Observation

Published online by Cambridge University Press:  30 July 2020

Ryan Schoell
Affiliation:
North Carolina State University, Raleigh, North Carolina, United States
David Frazer
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, United States
Peter Hosemann
Affiliation:
University of California Berkeley, Berkeley, California, United States
Djamel Kaoumi
Affiliation:
North Carolina State University, Raleigh, North Carolina, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
In situ TEM at the Extremes - Radiation Damage
Copyright
Copyright © Microscopy Society of America 2020

References

Todreas, Neil E., M.S.K., , Nuclear Systems: Thermal Hydraulic Fundamentals. 2 ed, ed. C. Press. Vol. 1. 2011.Google Scholar
Villacampa, I., et al. , Helium bubble evolution and hardening in 316L by post-implantation annealing. Journal of Nuclear Materials, 2018. 500: p. 389402.10.1016/j.jnucmat.2018.01.017CrossRefGoogle Scholar
Heintze, C., et al. , Irradiation hardening of Fe–9Cr-based alloys and ODS Eurofer: Effect of helium implantation and iron-ion irradiation at 300 °C including sequence effects. Journal of Nuclear Materials, 2016. 470: p. 258267.10.1016/j.jnucmat.2015.12.041CrossRefGoogle Scholar
Gao, J., Yabuuchi, K., and Kimura, A., Ion-irradiation hardening and microstructural evolution in F82H and ferritic alloys. Journal of Nuclear Materials, 2019. 515: p. 294302.10.1016/j.jnucmat.2018.12.047CrossRefGoogle Scholar
Roldán, M., et al. , Comparative study of helium effects on EU-ODS EUROFER and EUROFER97 by nanoindentation and TEM. Journal of Nuclear Materials, 2015. 460: p. 226234.10.1016/j.jnucmat.2015.02.025CrossRefGoogle Scholar
Weaver, J.S., et al. , Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening. Journal of Nuclear Materials, 2017. 493: p. 368379.10.1016/j.jnucmat.2017.06.031CrossRefGoogle Scholar
Landau, P., et al. , Deformation of as-fabricated and helium implanted 100nm-diameter iron nano-pillars. Materials Science and Engineering: A, 2014. 612: p. 316325.10.1016/j.msea.2014.06.052CrossRefGoogle Scholar
Zhao, X., et al. , In situ measurements of a homogeneous to heterogeneous transition in the plastic response of ion-irradiated 〈111〉 Ni microspecimens. Acta Materialia, 2015. 88: p. 121135.10.1016/j.actamat.2015.01.007CrossRefGoogle Scholar
Schoell, Ryan, Frazer, D., Zheng, Ce, Hosemann, Peter, Kaoumi, Djamel, In Situ Micro-Pillar Compression Tests of 304 Stainless Steels After Ion Irradiation and Helium Implantation. Journal of The Minerals, Metals & Materials, 2020.10.1007/s11837-020-04127-2CrossRefGoogle Scholar