Skip to main content Accessibility help
×
Home

SpRET: Highly Sensitive and Reliable Spectral Measurement of Absolute FRET Efficiency

  • Shiri Levy (a1), Christian D. Wilms (a2), Eliaz Brumer (a1), Joy Kahn (a1), Lilach Pnueli (a3), Yoav Arava (a3), Jens Eilers (a2) and Daniel Gitler (a1) (a4)...

Abstract

Contemporary research aims to understand biological processes not only by identifying participating proteins, but also by characterizing the dynamics of their interactions. Because Förster's Resonance Energy Transfer (FRET) is invaluable for the latter undertaking, its usage is steadily increasing. However, FRET measurements are notoriously error-prone, especially when its inherent efficiency is low, a not uncommon situation. Furthermore, many FRET methods are either difficult to implement, are not appropriate for observation of cellular dynamics, or report instrument-specific indices that hamper communication of results within the scientific community. We present here a novel comprehensive spectral methodology, SpRET, which substantially increases both the reliability and sensitivity of FRET microscopy, even under unfavorable conditions such as weak fluorescence or the presence of noise. While SpRET overcomes common pitfalls such as interchannel crosstalk and direct excitation of the acceptor, it also excels in removal of autofluorescence or background contaminations and in correcting chromatic aberrations, often overlooked factors that severely undermine FRET experiments. Finally, SpRET quantitatively reports absolute rather than relative FRET efficiency values, as well as the acceptor-to-donor molar ratio, which is critical for full and proper interpretation of FRET experiments. Thus, SpRET serves as an advanced, improved, and powerful tool in the cell biologist's toolbox.

Copyright

Corresponding author

Corresponding author. E-mail: gitler@bgu.ac.il

Footnotes

Hide All

Current address: Wolfson Institute for Biomedical Research, University College London, Gower Street, London NW6 2NE, United Kingdom

Footnotes

References

Hide All
Bayle, V., Nussaume, L. & Bhat, R.A. (2008). Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay. Plant Physiol 148(1), 5160.
Chen, H., Puhl, H.L. 3rd, Koushik, S.V., Vogel, S.S. & Ikeda, S.R. (2006). Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys J 91(5), L39–41.
Chen, Y., Mauldin, J.P., Day, R.N. & Periasamy, A. (2007). Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J Microsc 228(Pt 2), 139152.
Clegg, R.M. (2009). Forster resonance energy transfer—FRET; what is it, why do it and how its done. In FRET and FLIM Techniques, Gadella, T.W.J. (Ed.), pp. 158. Amsterdam: Elsevier.
Eldad, N., Yosefzon, Y. & Arava, Y. (2008). Identification and characterization of extensive intra-molecular associations between 3'-UTRs and their ORFs. Nucl Acids Res 36(21), 67286738.
Garcia, D.I., Lanigan, P., Webb, M., West, T.G., Requejo-Isidro, J., Auksorius, E., Dunsby, C., Neil, M., French, P. & Ferenczi, M.A. (2007). Fluorescence lifetime imaging to detect actomyosin states in mammalian muscle sarcomeres. Biophys J 93(6), 20912101.
Gordon, G.W., Berry, G., Liang, X.H., Levine, B. & Herman, B. (1998). Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74(5), 27022713.
Habenicht, A., Hjelm, J., Mukhtar, E., Bergström, F. & Johansson, L.B.Å. (2002). Two-photon excitation and time-resolved fluorescence: I. The proper response function for analysing single-photon counting experiments. Chem Phys Lett 354(5), 367375.
Jalink, K. & van Rheenen, J. (2009). FilterFRET: Quantitative imaging of sensitized emission. In FRET and FLIM Techniques, Gadella, T.W.J. (Ed.), pp. 289350. Amsterdam: Elsevier.
Jares-Erijman, E.A. & Jovin, T.M. (2003). FRET imaging. Nat Biotechnol 21(11), 13871395.
Jares-Erijman, E.A. & Jovin, T.M. (2006). Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10(5), 409416.
Jares-Erijman, E.A. & Jovin, T.M. (2009). Reflections on FRET imaging: Formalism, probes, and implementation. In FRET and FLIM Techniques, Gadella, T.W.J. (Ed.), pp. 475518. Amsterdam: Elsevier.
Jayaraman, S., Haggie, P., Wachter, R.M., Remington, S.J. & Verkman, A.S. (2000). Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275(9), 60476050.
Jones, P.B., Rozkalne, A., Meyer-Luehmann, M., Spires-Jones, T.L., Makarova, A., Kumar, A.T., Berezovska, O., Bacskai, B.B. & Hyman, B.T. (2008). Two postprocessing techniques for the elimination of background autofluorescence for fluorescence lifetime imaging microscopy. J Biomed Opt 13(1), 014008.
Koushik, S.V. & Vogel, S.S. (2008). Energy migration alters the fluorescence lifetime of Cerulean: Implications for fluorescence lifetime imaging Forster resonance energy transfer measurements. J Biomed Opt 13(3), 031204.
Kremers, G.-J. & Goedhart, J. (2009). Visible fluorescent proteins for FRET. In FRET and FLIM Techniques, Gadella, T.W.J. (Ed.), pp. 171223. Amsterdam: Elsevier.
Kuner, T. & Augustine, G.J. (2000). A genetically encoded ratiometric indicator for chloride: Capturing chloride transients in cultured hippocampal neurons. Neuron 27(3), 447459.
Lakowicz, J. (2006). Principles of Fluorescence Spectroscopy. New York: Springer.
Larson, J.M. (2006). The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed. Cytometry A 69(8), 825834.
Levy, S., Beharier, O., Etzion, Y., Mor, M., Buzaglo, L., Shaltiel, L., Gheber, L.A., Kahn, J., Muslin, A.J., Katz, A., Gitler, D. & Moran, A. (2009). The molecular basis for ZnT-1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 284, 3243432443.
Majumder, S., Ghoshal, K., Summers, D., Bai, S., Datta, J.qs & Jacob, S.T. (2003). Chromium(VI) down-regulates heavy metal-induced metallothionein gene transcription by modifying transactivation potential of the key transcription factor, metal-responsive transcription factor 1. J Biol Chem 278(28), 2621626226.
Mirshahi, T. & Logothetis, D.E. (2002). GIRK channel trafficking: Different paths for different family members. Mol Interv 2(5), 289291.
Miyawaki, A. (2003). Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4(3), 295305.
Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K. & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1), 8790.
Neher, R.A. & Neher, E. (2004). Applying spectral fingerprinting to the analysis of FRET images. Microsc Res Tech 64(2), 185195.
Nguyen, A.W. & Daugherty, P.S. (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23(3), 355360.
Nikolaev, V.O., Bunemann, M., Hein, L., Hannawacker, A. & Lohse, M.J. (2004). Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279(36), 3721537218.
O'Connor, D.V. & Phillips, D. (1984). Time-Correlated Single Photon Counting. New York: Academic Press.
Padilla-Parra, S., Auduge, N., Coppey-Moisan, M. & Tramier, M. (2008). Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J 95(6), 29762988.
Pepperkok, R., Squire, A., Geley, S. & Bastiaens, P.I. (1999). Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol 9(5), 269272.
Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. (2003). Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron 38(2), 225235.
Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. (2004). An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22(4), 445449.
Rizzo, M.A., Springer, G., Segawa, K., Zipfel, W.R. & Piston, D.W. (2006). Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins. Microsc Microanal 12(3), 238254.
Sarkar, P., Koushik, S.V., Vogel, S.S., Gryczynski, I. & Gryczynski, Z. (2009). Photophysical properties of Cerulean and Venus fluorescent proteins. J Biomed Opt 14(3), 034047.
Sikorski, R.S. & Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122(1), 1927.
Takanishi, C.L., Bykova, E.A., Cheng, W. & Zheng, J. (2006). GFP-based FRET analysis in live cells. Brain Res 1091(1), 132139.
Thaler, C., Koushik, S.V., Blank, P.S. & Vogel, S.S. (2005). Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J 89(4), 27362749.
Tramier, M., Zahid, M., Mevel, J.C., Masse, M.J. & Coppey-Moisan, M. (2006). Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 69(11), 933939.
Wallrabe, H. & Periasamy, A. (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16(1), 1927.
Wilms, C.D., Schmidt, H. & Eilers, J. (2006). Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium 40(1), 7379.
Wlodarczyk, J., Woehler, A., Kobe, F., Ponimaskin, E., Zeug, A. & Neher, E. (2008). Analysis of FRET signals in the presence of free donors and acceptors. Biophys J 94(3), 9861000.
Xia, Z. & Liu, Y. (2001). Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81(4), 23952402.
Yu, W., So, P.T., French, T. & Gratton, E. (1996). Fluorescence generalized polarization of cell membranes: A two-photon scanning microscopy approach. Biophys J 70(2), 626636.
Zal, T. & Gascoigne, N.R. (2004). Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J 86(6), 39233939.
Zimmermann, T., Rietdorf, J. & Pepperkok, R. (2003). Spectral imaging and its applications in live cell microscopy. FEBS Lett 546(1), 8792.

Keywords

Type Description Title
PDF
Supplementary materials

Shiri Levy Supplementary Material
Shiri Levy Supplementary Material

 PDF (443 KB)
443 KB

SpRET: Highly Sensitive and Reliable Spectral Measurement of Absolute FRET Efficiency

  • Shiri Levy (a1), Christian D. Wilms (a2), Eliaz Brumer (a1), Joy Kahn (a1), Lilach Pnueli (a3), Yoav Arava (a3), Jens Eilers (a2) and Daniel Gitler (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed