Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T17:12:42.914Z Has data issue: false hasContentIssue false

SpRET: Highly Sensitive and Reliable Spectral Measurement of Absolute FRET Efficiency

Published online by Cambridge University Press:  21 February 2011

Shiri Levy
Affiliation:
Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Christian D. Wilms
Affiliation:
Carl-Ludwig-Institut für Physiologie, Liebigstr. 27, 04103 Leipzig, Germany
Eliaz Brumer
Affiliation:
Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Joy Kahn
Affiliation:
Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Lilach Pnueli
Affiliation:
Department of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
Yoav Arava
Affiliation:
Department of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
Jens Eilers
Affiliation:
Carl-Ludwig-Institut für Physiologie, Liebigstr. 27, 04103 Leipzig, Germany
Daniel Gitler*
Affiliation:
Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
*
Corresponding author. E-mail: gitler@bgu.ac.il
Get access

Abstract

Contemporary research aims to understand biological processes not only by identifying participating proteins, but also by characterizing the dynamics of their interactions. Because Förster's Resonance Energy Transfer (FRET) is invaluable for the latter undertaking, its usage is steadily increasing. However, FRET measurements are notoriously error-prone, especially when its inherent efficiency is low, a not uncommon situation. Furthermore, many FRET methods are either difficult to implement, are not appropriate for observation of cellular dynamics, or report instrument-specific indices that hamper communication of results within the scientific community. We present here a novel comprehensive spectral methodology, SpRET, which substantially increases both the reliability and sensitivity of FRET microscopy, even under unfavorable conditions such as weak fluorescence or the presence of noise. While SpRET overcomes common pitfalls such as interchannel crosstalk and direct excitation of the acceptor, it also excels in removal of autofluorescence or background contaminations and in correcting chromatic aberrations, often overlooked factors that severely undermine FRET experiments. Finally, SpRET quantitatively reports absolute rather than relative FRET efficiency values, as well as the acceptor-to-donor molar ratio, which is critical for full and proper interpretation of FRET experiments. Thus, SpRET serves as an advanced, improved, and powerful tool in the cell biologist's toolbox.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Wolfson Institute for Biomedical Research, University College London, Gower Street, London NW6 2NE, United Kingdom

References

REFERENCES

Bayle, V., Nussaume, L. & Bhat, R.A. (2008). Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay. Plant Physiol 148(1), 5160.CrossRefGoogle Scholar
Chen, H., Puhl, H.L. 3rd, Koushik, S.V., Vogel, S.S. & Ikeda, S.R. (2006). Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys J 91(5), L39–41.CrossRefGoogle ScholarPubMed
Chen, Y., Mauldin, J.P., Day, R.N. & Periasamy, A. (2007). Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J Microsc 228(Pt 2), 139152.CrossRefGoogle ScholarPubMed
Clegg, R.M. (2009). Forster resonance energy transfer—FRET; what is it, why do it and how its done. In FRET and FLIM Techniques, Gadella, T.W.J. (Ed.), pp. 158. Amsterdam: Elsevier.Google Scholar
Eldad, N., Yosefzon, Y. & Arava, Y. (2008). Identification and characterization of extensive intra-molecular associations between 3'-UTRs and their ORFs. Nucl Acids Res 36(21), 67286738.CrossRefGoogle ScholarPubMed
Garcia, D.I., Lanigan, P., Webb, M., West, T.G., Requejo-Isidro, J., Auksorius, E., Dunsby, C., Neil, M., French, P. & Ferenczi, M.A. (2007). Fluorescence lifetime imaging to detect actomyosin states in mammalian muscle sarcomeres. Biophys J 93(6), 20912101.CrossRefGoogle ScholarPubMed
Gordon, G.W., Berry, G., Liang, X.H., Levine, B. & Herman, B. (1998). Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74(5), 27022713.CrossRefGoogle ScholarPubMed
Habenicht, A., Hjelm, J., Mukhtar, E., Bergström, F. & Johansson, L.B.Å. (2002). Two-photon excitation and time-resolved fluorescence: I. The proper response function for analysing single-photon counting experiments. Chem Phys Lett 354(5), 367375.CrossRefGoogle Scholar
Jalink, K. & van Rheenen, J. (2009). FilterFRET: Quantitative imaging of sensitized emission. In FRET and FLIM Techniques, Gadella, T.W.J. (Ed.), pp. 289350. Amsterdam: Elsevier.CrossRefGoogle Scholar
Jares-Erijman, E.A. & Jovin, T.M. (2003). FRET imaging. Nat Biotechnol 21(11), 13871395.CrossRefGoogle ScholarPubMed
Jares-Erijman, E.A. & Jovin, T.M. (2006). Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10(5), 409416.CrossRefGoogle ScholarPubMed
Jares-Erijman, E.A. & Jovin, T.M. (2009). Reflections on FRET imaging: Formalism, probes, and implementation. In FRET and FLIM Techniques, Gadella, T.W.J. (Ed.), pp. 475518. Amsterdam: Elsevier.CrossRefGoogle Scholar
Jayaraman, S., Haggie, P., Wachter, R.M., Remington, S.J. & Verkman, A.S. (2000). Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275(9), 60476050.CrossRefGoogle ScholarPubMed
Jones, P.B., Rozkalne, A., Meyer-Luehmann, M., Spires-Jones, T.L., Makarova, A., Kumar, A.T., Berezovska, O., Bacskai, B.B. & Hyman, B.T. (2008). Two postprocessing techniques for the elimination of background autofluorescence for fluorescence lifetime imaging microscopy. J Biomed Opt 13(1), 014008.CrossRefGoogle ScholarPubMed
Koushik, S.V. & Vogel, S.S. (2008). Energy migration alters the fluorescence lifetime of Cerulean: Implications for fluorescence lifetime imaging Forster resonance energy transfer measurements. J Biomed Opt 13(3), 031204.Google ScholarPubMed
Kremers, G.-J. & Goedhart, J. (2009). Visible fluorescent proteins for FRET. In FRET and FLIM Techniques, Gadella, T.W.J. (Ed.), pp. 171223. Amsterdam: Elsevier.CrossRefGoogle Scholar
Kuner, T. & Augustine, G.J. (2000). A genetically encoded ratiometric indicator for chloride: Capturing chloride transients in cultured hippocampal neurons. Neuron 27(3), 447459.CrossRefGoogle ScholarPubMed
Lakowicz, J. (2006). Principles of Fluorescence Spectroscopy. New York: Springer.CrossRefGoogle Scholar
Larson, J.M. (2006). The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed. Cytometry A 69(8), 825834.CrossRefGoogle ScholarPubMed
Levy, S., Beharier, O., Etzion, Y., Mor, M., Buzaglo, L., Shaltiel, L., Gheber, L.A., Kahn, J., Muslin, A.J., Katz, A., Gitler, D. & Moran, A. (2009). The molecular basis for ZnT-1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 284, 3243432443.CrossRefGoogle ScholarPubMed
Majumder, S., Ghoshal, K., Summers, D., Bai, S., Datta, J.qs & Jacob, S.T. (2003). Chromium(VI) down-regulates heavy metal-induced metallothionein gene transcription by modifying transactivation potential of the key transcription factor, metal-responsive transcription factor 1. J Biol Chem 278(28), 2621626226.CrossRefGoogle ScholarPubMed
Mirshahi, T. & Logothetis, D.E. (2002). GIRK channel trafficking: Different paths for different family members. Mol Interv 2(5), 289291.CrossRefGoogle ScholarPubMed
Miyawaki, A. (2003). Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4(3), 295305.CrossRefGoogle ScholarPubMed
Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K. & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1), 8790.CrossRefGoogle ScholarPubMed
Neher, R.A. & Neher, E. (2004). Applying spectral fingerprinting to the analysis of FRET images. Microsc Res Tech 64(2), 185195.CrossRefGoogle Scholar
Nguyen, A.W. & Daugherty, P.S. (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23(3), 355360.CrossRefGoogle ScholarPubMed
Nikolaev, V.O., Bunemann, M., Hein, L., Hannawacker, A. & Lohse, M.J. (2004). Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279(36), 3721537218.CrossRefGoogle ScholarPubMed
O'Connor, D.V. & Phillips, D. (1984). Time-Correlated Single Photon Counting. New York: Academic Press.Google Scholar
Padilla-Parra, S., Auduge, N., Coppey-Moisan, M. & Tramier, M. (2008). Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J 95(6), 29762988.CrossRefGoogle ScholarPubMed
Pepperkok, R., Squire, A., Geley, S. & Bastiaens, P.I. (1999). Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol 9(5), 269272.CrossRefGoogle ScholarPubMed
Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. (2003). Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron 38(2), 225235.CrossRefGoogle Scholar
Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. (2004). An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22(4), 445449.CrossRefGoogle ScholarPubMed
Rizzo, M.A., Springer, G., Segawa, K., Zipfel, W.R. & Piston, D.W. (2006). Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins. Microsc Microanal 12(3), 238254.CrossRefGoogle ScholarPubMed
Sarkar, P., Koushik, S.V., Vogel, S.S., Gryczynski, I. & Gryczynski, Z. (2009). Photophysical properties of Cerulean and Venus fluorescent proteins. J Biomed Opt 14(3), 034047.CrossRefGoogle ScholarPubMed
Sikorski, R.S. & Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122(1), 1927.CrossRefGoogle ScholarPubMed
Takanishi, C.L., Bykova, E.A., Cheng, W. & Zheng, J. (2006). GFP-based FRET analysis in live cells. Brain Res 1091(1), 132139.CrossRefGoogle ScholarPubMed
Thaler, C., Koushik, S.V., Blank, P.S. & Vogel, S.S. (2005). Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J 89(4), 27362749.CrossRefGoogle ScholarPubMed
Tramier, M., Zahid, M., Mevel, J.C., Masse, M.J. & Coppey-Moisan, M. (2006). Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 69(11), 933939.CrossRefGoogle ScholarPubMed
Wallrabe, H. & Periasamy, A. (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16(1), 1927.CrossRefGoogle ScholarPubMed
Wilms, C.D., Schmidt, H. & Eilers, J. (2006). Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium 40(1), 7379.CrossRefGoogle ScholarPubMed
Wlodarczyk, J., Woehler, A., Kobe, F., Ponimaskin, E., Zeug, A. & Neher, E. (2008). Analysis of FRET signals in the presence of free donors and acceptors. Biophys J 94(3), 9861000.CrossRefGoogle ScholarPubMed
Xia, Z. & Liu, Y. (2001). Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81(4), 23952402.CrossRefGoogle Scholar
Yu, W., So, P.T., French, T. & Gratton, E. (1996). Fluorescence generalized polarization of cell membranes: A two-photon scanning microscopy approach. Biophys J 70(2), 626636.CrossRefGoogle ScholarPubMed
Zal, T. & Gascoigne, N.R. (2004). Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J 86(6), 39233939.CrossRefGoogle ScholarPubMed
Zimmermann, T., Rietdorf, J. & Pepperkok, R. (2003). Spectral imaging and its applications in live cell microscopy. FEBS Lett 546(1), 8792.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Shiri Levy Supplementary Material

Shiri Levy Supplementary Material

Download Shiri Levy Supplementary Material(PDF)
PDF 442.6 KB