Skip to main content Accessibility help

Specific Surface Area and Three-Dimensional Nanostructure Measurements of Porous Titania Photocatalysts by Electron Tomography and Their Relation to Photocatalytic Activity

  • Kenta Yoshida (a1) (a2), Masaki Makihara (a3), Nobuo Tanaka (a3), Shinobu Aoyagi (a4), Eiji Nishibori (a4), Makoto Sakata (a5), Edward D. Boyes (a6) (a7) and Pratibha L. Gai (a1) (a6) (a7)...


Various porous titania photocatalysts are analyzed three-dimensionally in real space by electron tomography. Shapes and three-dimensional (3D) distributions of fine pores and silver (Ag) particles (2 nm in diameter) within the pores are successfully reconstructed from the 3D data. Electron tomography is applied for measuring the specific surface area of the porous structures including open and closed porosity. Calculated specific surface areas of 22.8 m2/g for a conventional sol-gel TiO2 sample and 366 m2/g for a highly porous TiO2 sample prepared using the Pluronic P-123 self-assembly process are compared with those measured by the general BET method. The real-space surface measurement indicates that the highly porous TiO2 produced by the present method using block copolymers has a greater number of effective reaction sites for the degradation of methylene blue. Electron tomography shows a great potential to contribute considerably to the nanostructural analysis and design of such catalyst materials for photocatalysis.


Corresponding author

Corresponding author. E-mail:


Hide All
Alexandridis, P., Olsson, U. & Lindman, B. (1998). A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 14(10), 26272638.
Aoyagi, S., Kuroiwa, Y., Sawada, A., Kawaji, H. & Atake, T. (2005). Size effect on crystal structure and chemical bonding nature in BaTiO3 nanopowder. J Therm Anal Cal 81(3), 627630.
Aoyagi, S., Kuroiwa, Y., Sawada, A., Yamashita, I. & Atake, T. (2002). Composite structure of BaTiO3 nanoparticle investigated by SR X-ray diffraction. J Phys Soc Jpn 71, 12181221.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Takagi, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269271.
Avnir, D., Farin, D. & Pfeifer, P. (1984). Molecular fractal surfaces. Nature 308, 261263.
Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of gases in multimolecular layers. J Am Chem Soc 60, 309319.
Fahrenkamp-Uppenbrink, J. (2009). Gold needles in a haystack. Science 325(10), 5937.
Frank, J. (1992). Electron Tomography: Three Dimensional Imaging with the Transmission Electron Microscope. New York, London: Plenum.
Fujishima, A. & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 3738.
Gonzáles, J.C., Hernandez, J.C., Lopez, M., Rio, E.D., Delgado, J.J., Hungria, A.B., Trasobares, S., Bernal, S., Midgley, P.A. & Calvino, J.J. (2009). 3D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. Angew Chem 48(29), 53135315.
Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today 36(1), 153166.
Holmqvist, P., Alexandridis, P. & Lindman, B. (1997). Modification of the microstructure in poloxamer block copolymer–water–“oil” systems by varying the “oil” type. Macromolecules 30(22), 67886797.
Horn, M., Schwerdtfeger, C.F. & Meagher, E.P. (1972). Refinement of the structure of anatase at several temperatures. Z Kristallogr 136, 273281.
Howie, A. (1979). Electron microscope image contrast and localized signal selection techniques. J Microsc 117(1), 1123.
Jelinek, L. & Kováts, E. (1994). True surface areas from nitrogen adsorption experiments. Langmuir 10(11), 42254231.
Kaneko, K., Inoke, K., Freitag, B., Hungria, A.B., Midgley, P.A., Hansen, T.W., Zhang, J., Ohara, S. & Adschiri, T. (2007). Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett 7(27), 421425.
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. (1996). Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116(1), 7176.
Kumar, K.N.P., Keizer, K., Burggraaf, A.J., Okubo, T., Nagamoto, H. & Morooka, S. (1992). Densification of nanostructured titania assisted by a phase transformation. Nature 358(6381), 4851.
Mastronarde, D.N. (1997). Dual-axis tomography: An approach with alignment methods that preserve resolution. J Struct Biol 120(3), 343352.
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96(3-4), 413431.
Musić, S., Gotić, M., Ivanda, M., Popović, S., Turković, A., Trojko, R., Sekulić, A. & Furić, K. (1997). Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure. Mater Sci Eng 47(1), 3340.
Nambara, T., Yoshida, K., Miao, L., Tanemura, S. & Tanaka, N. (2007). Preparation of strain-included rutile titanium oxide thin films and influence of the strain upon optical properties. Thin Solid Films 515(5), 30963101.
Nishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamakata, M. & Ikeda, N. (2001). The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl Instrum Methods Phys Res A 467&468, 10451048.
Pfeifer, P. & Avnir, D. (1983). Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J Chem Phys 79, 35583565.
Sueda, S., Yoshida, K. & Tanaka, N. (2010). Quantification of metallic nanoparticle morphology on TiO2 using HAADF-STEM tomography. Ultramicroscopy 110(9), 11201127.
Tanaka, N., Cho, S.P., Shklyaev, A.A., Yamasaki, J., Okunishi, E. & Ichikawa, M. (2008). Spherical aberration corrected STEM studies of Ge nanodots grown on Si(0 0 1) surfaces with an ultrathin SiO2 coverage. Appl Surf Sci 254(23), 75697572.
Yamasaki, J., Tanaka, N., Baba, N., Kakibayashi, H. & Terasaki, O. (2004). Three-dimensional analysis of platinum supercrystals by transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy observations. Philos Mag 84(25-26), 28192828.
Yoshida, K., Ikuhara, Y.H., Takahashi, S., Hirayama, T., Saito, T., Sueda, S., Tanaka, N. & Gai, P.L. (2009). The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotech 20, 315703.
Yoshida, K., Kawai, T., Nanbara, T., Tanemura, S., Saitoh, K. & Tanaka, N. (2006a). Direct observation of oxygen atoms in rutile titanium dioxide by spherical aberration corrected high-resolution transmission electron microscopy. Nanotech 17(15), 39443950.
Yoshida, K., Yamasaki, J. & Tanaka, N. (2006b). Oxygen release and structural changes in TiO2 films during photocatalytic oxidation. J Appl Phys 99(8), 084908.
Zemlin, F., Weiss, K., Schiske, P., Kunath, W. & Hermann, K.H. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.


Type Description Title
Supplementary materials

Yoshida Supplementary Material
Yoshida Supplementary Material

 PDF (6.3 MB)
6.3 MB

Specific Surface Area and Three-Dimensional Nanostructure Measurements of Porous Titania Photocatalysts by Electron Tomography and Their Relation to Photocatalytic Activity

  • Kenta Yoshida (a1) (a2), Masaki Makihara (a3), Nobuo Tanaka (a3), Shinobu Aoyagi (a4), Eiji Nishibori (a4), Makoto Sakata (a5), Edward D. Boyes (a6) (a7) and Pratibha L. Gai (a1) (a6) (a7)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed