Skip to main content Accessibility help

A Small Spot, Inert Gas, Ion Milling Process as a Complementary Technique to Focused Ion Beam Specimen Preparation

  • Paul E. Fischione (a1), Robert E.A. Williams (a2), Arda Genç (a2), Hamish L. Fraser (a2), Rafal E. Dunin-Borkowski (a3), Martina Luysberg (a3), Cecile S. Bonifacio (a1) and András Kovács (a3)...


This paper reports on the substantial improvement of specimen quality by use of a low voltage (0.05 to ~1 keV), small diameter (~1 μm), argon ion beam following initial preparation using conventional broad-beam ion milling or focused ion beam. The specimens show significant reductions in the amorphous layer thickness and implanted artifacts. The targeted ion milling controls the specimen thickness according to the needs of advanced aberration-corrected and/or analytical transmission electron microscopy applications.


Corresponding author

* Corresponding author.


Hide All
Anderson, R. & Klepeis, S.J. (2005). Practical aspects of FIB TEM specimen preparation. In Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice, Giannuzzi, L.A. & Stevie, F.A. (Eds.), pp. 173200. New York, NY: Springer.
Bahnck, D. & Hull, R. (1990). Experimental measurement of transmission electron microscope specimen temperature during ion milling. MRS Online Proc Libr 199, 253.
Barber, D.J. (1993). Radiation damage in ion-milled specimens: Characteristics, effects and methods of damage limitation. Ultramicroscopy 52(1), 101125.
Barna, Á. (1991). Topographic kinetics and practice of low angle ion beam thinning. MRS Online Proc Libr 254, 322.
Barna, Á., Pécz, B. & Menyhard, M. (1998). Amorphisation and surface morphology development at low-energy ion milling. Ultramicroscopy 70(3), 161171.
Barna, Á., Pécz, B. & Menyhard, M. (1999). TEM sample preparation by ion milling/amorphization. Micron 30(3), 267276.
Barnard, A.W., Hyun, J.K., Grazul, J.L. & Muller, D.A. (2006). Surface roughness instabilities in low-angle ion milling. Microsc Microanal 12(S02), 13181319.
Basile, D.P., Boylan, R., Baker, B., Hayes, K. & Soza, D. (1991). Fibxtem—Focussed ion beam milling for TEM sample preparation. MRS Online Proc Libr 254, 2341.
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-Ångström resolution using aberration corrected electron optics. Nature 418(6898), 617620.
Cooper, D., Truche, R., Twitchett-Harrison, A., Dunin-Borkowski, R.E. & Midgley, P. (2009). Quantitative off-axis electron holography of GaAs p-n junctions prepared by focused ion beam milling. J Microsc 233(1), 102113.
Das, A.K., Pampuch, C., Ney, A., Hesjedal, T., Däweritz, L., Koch, R. & Ploog, K.H. (2003). Ferromagnetism of MnAs studied by heteroepitaxial films on GaAs(001). Phys Rev Lett 91(8), 087203.
Genç, A., Ohio State University & E.A. Fischione Instruments Inc (2007). Post-FIB TEM sample preparation using a low energy argon beam. Microsc Microanal 13(S02), 15201521.
Giannuzzi, L.A. (2006). Reducing FIB damage using low energy ions. Microsc Microanal 12(S02), 12601261.
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197204.
Hartel, P., Rose, H. & Dinges, C. (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63(2), 93114.
Hauser, A.J., Williams, R.E., Ricciardo, R.A., Genç, A., Dixit, M., Lucy, J.M., Woodward, P.M., Fraser, H.L. & Yang, F. (2011). Unlocking the potential of half-metallic Sr2FeMoO6 films through controlled stoichiometry and double-perovskite ordering. Phys Rev B 83(1), 014407.
Huh, Y., Hong, K. & Shin, K. (2013). Amorphization induced by focused ion beam milling in metallic and electronic materials. Microsc Microanal 19(S5), 3337.
Jia, C.L., Houben, L., Thust, A. & Barthel, J. (2010). On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy 110(5), 500505.
Jia, C.L., Mi, S.B., Barthel, J., Wang, D.W., Dunin-Borkowski, R.E., Urban, K.W. & Thust, A. (2014). Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nat Mater 13(11), 10441049.
Kamino, T., Yaguchi, T., Hashimoto, T., Ohnishi, T. & Umemura, K. (2005). A FIB micro-sampling technique and a site specific TEM specimen preparation method. In Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice, Giannuzzi, L.A. & Stevie, F.A. (Eds.), pp. 229–245. New York, NY: Springer Science+Business Media, Inc.
Kato, N.I. (2004). Reducing focused ion beam damage to transmission electron microscopy samples. J Electron Microsc 53(5), 451458.
Kirk, E.C., Williams, D.A. & Ahmed, H. (1989). Cross-sectional transmission electron microscopy of precisely selected regions from semiconductor devices. Inst Phys Conf Ser 100, 501506.
Kovács, A., Ney, A., Duchamp, M., Ney, V., Boothroyd, C.B., Galindo, P.L., Kaspar, T.C., Chambers, S.A. & Dunin-Borkowski, R.E. (2013). Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy. J Appl Phys 114, 243503.
LeBeau, J.M., D’Alfonso, A.J., Findlay, S.D., Stemmer, S. & Allen, L.J. (2009). Quantitative comparisons of contrast in experimental and simulated bright-field scanning transmission electron microscopy images. Phys Rev B 80(17), 174106.
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100(20), 206101.
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010 a). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110(2), 118125.
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010 b). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11), 44054408.
Li, L. & Yang, J.C. (2002). Oxide structures formed on silver single crystals due to hyperthermal atomic oxygen exposure. MRS Online Proc Libr 751, Z3.37.
Lotnyk, A., Poppitz, D., Ross, U., Gerlach, J., Frost, F., Bernütz, S., Thelander, E. & Rauschenbach, B. (2015). Focused high- and low-energy ion milling for TEM specimen preparation. Microelectron Reliab 55(9–10), 21192125.
Mayer, J., Giannuzzi, L.A., Kamino, T. & Michael, J. (2007). TEM sample preparation and FIB-induced damage. MRS Bull 32(5), 400407.
McCaffrey, J.P., Phaneuf, M.W. & Madsen, L.D. (2001). Surface damage formation during ion-beam thinning of samples for transmission electron microscopy. Ultramicroscopy 87, 97104.
Mehrtens, T., Bley, S., Venkata Satyam, P. & Rosenauer, A. (2012). Optimization of the preparation of GaN-based specimens with low-energy ion milling for (S)TEM. Micron 43(8), 902909.
Miyajima, N., Holzapfel, C., Asahara, Y., Dubrovinsky, L., Frost, D., Rubie, D., Drechsler, M., Niwa, K., Ichihara, M. & Yagi, T. (2010). Combining FIB milling and conventional Argon ion milling techniques to prepare high-quality site-specific TEM samples for quantitative EELS analysis of oxygen in molten iron. J Microsc 238(3), 200209.
Mkhoyan, K., Babinec, T., Maccagnano, S., Kirkland, E. & Silcox, J. (2007). Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy 107(4–5), 345355.
MoberlyChan, W.J., Adams, D.P., Aziz, M.J., Hobler, G. & Schenkel, T. (2007). Fundamentals of focused ion beam nanostructural processing: Below, at, and above the surface. MRS Bull 32(5), 424432.
Phillips, P.J., Brandes, M.C., Mills, M.J. & De Graef, M. (2011). Diffraction contrast STEM of dislocations: Imaging and simulations. Ultramicroscopy 111(9–10), 14831487.
Rafferty, B., Nellist, D. & Pennycook, J. (2001). On the origin of transverse inchoherence in Z-contrast STEM. J Electron Microsc 50(3), 227233.
Schaffer, M., Schaffer, B. & Ramasse, Q. (2012). Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114, 6271.
Scheu, C., Gao, M., Van Benthem, K., Tsukimoto, S., Schmidt, S., Sigle, W., Richter, G. & Thomas, J. (2003). Advances in EELS spectroscopy by using new detector and new specimen preparation technologies. J Microsc 210(1), 1624.
Unocic, K.A., Mills, M.J. & Daehn, G.S. (2010). Effect of gallium focused ion beam milling on preparation of aluminium thin foils. J Microsc 240(3), 227238.
Utke, I., Hoffmann, P. & Melngailis, J. (2008). Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26(4), 11971276.
Volkert, C.A. & Minor, A.M. (2007). Focused ion beam microscopy and micromachining. MRS Bull 32(5), 389399.
Young, R.J., Kirk, E.C., Williams, D.A. & Ahmed, H. (1990). Fabrication of planar and cross-sectional TEM specimens using a focused ion beam. MRS Online Proc Libr 199, 205216.


Related content

Powered by UNSILO

A Small Spot, Inert Gas, Ion Milling Process as a Complementary Technique to Focused Ion Beam Specimen Preparation

  • Paul E. Fischione (a1), Robert E.A. Williams (a2), Arda Genç (a2), Hamish L. Fraser (a2), Rafal E. Dunin-Borkowski (a3), Martina Luysberg (a3), Cecile S. Bonifacio (a1) and András Kovács (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.