Skip to main content Accessibility help
×
Home

Reflections on the Analysis of Interfaces and Grain Boundaries by Atom Probe Tomography

  • Benjamin M. Jenkins (a1), Frédéric Danoix (a2), Mohamed Gouné (a3), Paul A.J. Bagot (a1), Zirong Peng (a4), Michael P. Moody (a1) and Baptiste Gault (a4) (a5)...

Abstract

Interfaces play critical roles in materials and are usually both structurally and compositionally complex microstructural features. The precise characterization of their nature in three-dimensions at the atomic scale is one of the grand challenges for microscopy and microanalysis, as this information is crucial to establish structure–property relationships. Atom probe tomography is well suited to analyzing the chemistry of interfaces at the nanoscale. However, optimizing such microanalysis of interfaces requires great care in the implementation across all aspects of the technique from specimen preparation to data analysis and ultimately the interpretation of this information. This article provides critical perspectives on key aspects pertaining to spatial resolution limits and the issues with the compositional analysis that can limit the quantification of interface measurements. Here, we use the example of grain boundaries in steels; however, the results are applicable for the characterization of grain boundaries and transformation interfaces in a very wide range of industrially relevant engineering materials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reflections on the Analysis of Interfaces and Grain Boundaries by Atom Probe Tomography
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reflections on the Analysis of Interfaces and Grain Boundaries by Atom Probe Tomography
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reflections on the Analysis of Interfaces and Grain Boundaries by Atom Probe Tomography
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Author for correspondence: Baptiste Gault, E-mail: b.gault@mpie.de

References

Hide All
Araullo-Peters, V, Gault, B, de Geuser, F, Deschamps, A & Cairney, JM (2014). Microstructural evolution during ageing of Al–Cu–Li–x alloys. Acta Mater 66, 199208.
Babinsky, K, De Kloe, R, Clemens, H & Primig, S (2014). A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144, 918.
Bas, P, Bostel, A, Deconihout, B & Blavette, D (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87–88, 298304.
Blavette, D, Cadel, E, Fraczkeiwicz, A & Menand, A (1999). Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 23172319.
Blavette, D, Deconihout, B, Bostel, A, Sarrau, JM, Bouet, M & Menand, A (1993). The tomographic atom-probe—a quantitative 3-dimensional nanoanalytical instrument on an atomic-scale. Rev Sci Instrum 64, 29112919.
Blavette, D, Vurpillot, F, Pareige, P & Menand, A (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145153.
Blum, TB, Darling, JR, Kelly, TF, Larson, DJ, Moser, DE, Perez-Huerta, A, Prosa, TJ, Reddy, SM, Reinhard, DA, Saxey, DW, Ulfig, RM & Valley, JW (2017). Best practices for reporting atom probe analysis of geological materials. In Microstructural Geochronology: Planetary Records Down to Atom Scale, Geophysical Monograph, vol. 232, 1st ed. Moser, DE, Corfu, F, Darling, JR, Reddy, SM & Tait, K (Eds.), pp. 369373. Hoboken, New Jersey: John Wiley & Sons, Inc.
Breen, AJ, Babinsky, K, Day, AC, Eder, K, Oakman, CJ, Trimby, PW, Primig, S, Cairney, JM & Ringer, SP (2017). Correlating atom probe crystallographic measurements with transmission Kikuchi diffraction data. Microsc Microanal 23, 279290.
Chang, Y, Breen, AJ, Tarzimoghadam, Z, Kürnsteiner, P, Gardner, H, Ackerman, A, Radecka, A, Bagot, PAJ, Lu, W, Li, T, Jägle, EA, Herbig, M, Stephenson, LT, Moody, MP, Rugg, D, Dye, D, Ponge, D, Raabe, D & Gault, B (2018). Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Mater 150, 273280.
Danoix, F, Sauvage, X, Huin, D, Germain, L & Gouné, M (2016). A direct evidence of solute interactions with a moving ferrite/austenite interface in a model Fe-C-Mn alloy. Scr Mater 121, 6165.
De Geuser, F & Gault, B (2017). Reflections on the projection of ions in atom probe tomography. Microsc Microanal 23, 238246.
De Geuser, F & Gault, B (2020). Metrology of small particles and solute clusters by atom probe tomography. Acta Materialia 188, 406415.
Enomoto, M, White, CL & Aaronson, HI (1988). Evaluation of the effects of segregation on austenite grain boundary energy in Fe-C-X alloys. Metall Trans A 19, 18071818.
Felfer, P & Cairney, J (2018). Advanced concentration analysis of atom probe tomography data: Local proximity histograms and pseudo-2D concentration maps. Ultramicroscopy 189, 6164.
Felfer, P, Ceguerra, A, Ringer, S & Cairney, J (2013). Applying computational geometry techniques for advanced feature analysis in atom probe data. Ultramicroscopy 132, 100106.
Felfer, P, Scherrer, B, Demeulemeester, J, Vandervorst, W & Cairney, JM (2015). Mapping interfacial excess in atom probe data. Ultramicroscopy 159, 438444.
Felfer, PJ, Alam, T, Ringer, SP & Cairney, JM (2012 a). A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc Res Techniq 75, 484491.
Felfer, PJ, Gault, B, Sha, G, Stephenson, LT, Ringer, SP & Cairney, JM (2012 b). A new approach to the determination of concentration profiles in atom probe tomography. Microsc Microanal 18, 359364.
Fletcher, HA, Garratt-Reed, AJ, Aaronson, HI, Purdy, GR, Reynolds, WT Jr & Smith, GDW (2001). A STEM method for investigating alloying element accumulation at austenite–ferrite boundaries in an Fe–C–Mo alloy. Scr Mater 45, 561567.
Gault, B, de Geuser, F, Bourgeois, L, Gabble, BM, Ringer, SP & Muddle, BC (2011 a). Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al-Cu-Li-Mg-Ag alloy. Ultramicroscopy 111, 683689.
Gault, B, Haley, D, de Geuser, F, Moody, MP, Marquis, EA, Larson, DJ & Geiser, BP (2011 b). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448457.
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom probe crystallography. Mater Today 15, 378386.
Gault, B, Moody, MP, De Geuser, F, Haley, D, Stephenson, LT & Ringer, SP (2009). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95, 34103.
Gault, B, Moody, MP, De Geuser, F, La Fontaine, A, Stephenson, LT, Haley, D & Ringer, SP (2010). Spatial resolution in atom probe tomography. Microsc Microanal 16, 99110.
Geiser, BP, Larson, DJ, Oltman, E, Gerstl, SS, Reinhard, DA, Kelly, TF & Prosa, TJ (2009). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15(suppl), 292293.
Gibbs, J (1948). The Collected Works. Vol. 1. Thermodynamics. New Haven: Yale University Press.
Gouné, M, Danoix, F, Ågren, J, Bréchet, Y, Hutchinson, CR, Militzer, M, Purdy, G, van der Zwaag, S & Zurob, H (2015). Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels. Mater Sci Eng R 92, 138.
Guggenheim, EA (1950). Thermodynamics. 2nd ed. Amsterdam: North Holland Publishing Company.
Guo, H & Enomoto, M (2007). Effects of substitutional solute accumulation at α/γ boundaries on the growth of ferrite in low carbon steels. Metall Mater Trans A 38, 11521161.
Harmer, MP (2011). The phase behavior of interfaces. Science 332(6026), 182183.
Hellman, OC, du Rivage, JB & Seidman, DN (2003). Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy 95, 199205.
Hellman, OC, Vandenbroucke, JA, Rüsing, J, Isheim, D & Seidman, DN (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6, 437444.
Herbig, M, Raabe, D, Li, YJ, Choi, P, Zaefferer, S & Goto, S (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112, 126103.
Hondros, ED, Seah, MP, Hofmann, S & Lejček, P (1996). Interfacial and surface microchemistry. In Physical Metallurgy, Cahn, RW & Haasen, P (Eds.), pp. 12011289. Amsterdam: Elsevier Science & Technology.
Kelly, TF & Miller, MK (2007). Atom probe tomography. Rev Sci Instrum 78, 31101.
Kontis, P, Li, Z, Collins, DM, Cormier, J, Raabe, D & Gault, B (2018). The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys. Scr Mater 145, 7680.
Krakauer, BW, Hu, JG, Kuo, SM, Mallick, RL, Seki, A, Seidman, DN, Baker, JP & Loyd, RJ (1990). A system for systematically preparing atom-probe field-ion-microscope specimens for the study of internal interfaces. Rev Sci Instrum 61, 33903398.
Krakauer, BW & Seidman, DN (1993). Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys Rev B 48, 67246727.
Kuzmina, M, Herbig, M, Ponge, D, Sandlobes, S & Raabe, D (2015). Linear complexions: Confined chemical and structural states at dislocations. Science 349, 10801083.
Kwiatkowski da Silva, A, Leyson, G, Kuzmina, M, Ponge, D, Herbig, M, Sandlöbes, S, Gault, B, Neugebauer, J & Raabe, D (2017). Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: A correlative TEM-atom probe study combined with multiscale modelling. Acta Mater 124, 305315.
Kwiatkowski da Silva, A, Ponge, D, Peng, Z, Inden, G, Lu, Y, Breen, A, Gault, B & Raabe, D (2018). Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nat Commun 9, 1137.
Liebscher, CH, Stoffers, A, Alam, M, Lymperakis, L, Cojocaru-Mirédin, O, Gault, B, Neugebauer, J, Dehm, G, Scheu, C & Raabe, D (2018 a). Strain-induced asymmetric line segregation at faceted Si grain boundaries. Phys Rev Lett 121, 15702.
Liebscher, CH, Yao, M, Dey, P, Lipińska-Chwalek, M, Berkels, B, Gault, B, Hickel, T, Herbig, M, Mayer, J, Neugebauer, J, Raabe, D, Dehm, G & Scheu, C (2018 b). Tetragonal fcc-Fe induced by κ-carbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. Phys Rev Mater 2, 23804.
Marquis, EA, Bachhav, M, Chen, Y, Dong, Y, Gordon, LM & McFarland, A (2013). On the current role of atom probe tomography in materials characterization and materials science. Curr Opin Solid State Mater Sci 17, 217223.
Marquis, EA & Vurpillot, F (2008). Chromatic aberrations in the field evaporation behavior of small precipitates. Microsc Microanal 14, 561570.
Martin, TL, Radecka, A, Sun, L, Simm, T, Dye, D, Perkins, K, Gault, B, Moody, MP & Bagot, PAJ (2016). Insights into microstructural interfaces in aerospace alloys characterised by atom probe tomography. Mater Sci Technol 32, 232241.
Maruyama, N, Smith, GDWDW & Cerezo, A (2003). Interaction of the solute niobium or molybdenum with grain boundaries in α-iron. Mater Sci Eng A 353, 126132.
Medlin, DL, Hattar, K, Zimmerman, JA, Abdeljawad, F & Foiles, SM (2017). Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ=5 grain boundary in Fe. Acta Mater 124, 383396.
Miller, MK & Hetherington, MG (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.
Miller, MK, Russell, KF & Thompson, GB (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102, 287298.
Mills, MJ (1993). High resolution transmission electron microscopy and atomistic calculations of grain boundaries in metals and intermetallics. Mater Sci Eng A 166, 3550.
Moody, MP, Stephenson, LT, Ceguerra, AV & Ringer, SP (2008). Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc Res Technol 71, 542550.
Moody, MP, Tang, F, Gault, B, Ringer, SP & Cairney, JM (2011). Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy 111, 493499.
Müller, EW, Panitz, JA & McLane, SB (1968). Atom-probe field ion microscope. Rev Sci Instrum 39, 8386.
Oberdorfer, C, Eich, SM & Schmitz, G (2013). A full-scale simulation approach for atom probe tomography. Ultramicroscopy 128, 5567.
Peng, Z, Lu, Y, Hatzoglou, C, Kwiatkowski da Silva, A, Vurpillot, F, Ponge, D, Raabe, D & Gault, B (2019 a). An automated computational approach for complete in-plane compositional interface analysis by atom probe tomography. Microsc Microanal 15, 389400.
Peng, Z, Vurpillot, F, Choi, P, Li, Y, Raabe, D & Gault, B (2018). On the detection of multiple events in atom probe tomography. Ultramicroscopy 189, 5460.
Peng, Z, Zanuttini, D, Gervais, B, Jacquet, E, Blum, I, Choi, PP, Raabe, D, Vurpillot, F & Gault, B (2019 b). Unraveling the metastability of Cn2+ (n=2–4) clusters. J Phys Chem Lett 10, 581588.
Prosa, TJ & Larson, DJ (2017). Modern focused-ion-beam-based site-specific specimen preparation for atom probe tomography. Microsc Microanal 23, 194209.
Purdy, G, Ågren, J, Borgenstam, A, Bréchet, Y, Enomoto, M, Furuhara, T, Gamsjager, E, Gouné, M, Hillert, M, Hutchinson, C, Militzer, M & Zurob, H (2011). ALEMI: A ten-year history of discussions of alloying-element interactions with migrating interfaces. Metall Mater Trans A 42, 37033718.
Rolland, N, Larson, DJ, Geiser, BP, Duguay, S, Vurpillot, F & Blavette, D (2015). An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials. Ultramicroscopy.
Sauvage, X, Renaud, L, Deconihout, B, Blavette, D, Ping, DH & Hono, K (2001). Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater 49, 389394.
Schwarz, T., Stechmann, G., Gault, B., Cojocaru-Mirédin, O., Wuerz, R. & Raabe, D. (2017). Correlative transmission Kikuchi diffraction and atom probe tomography study of Cu(In,Ga)Se 2 grain boundaries. Prog Photovoltaics.
Sha, W, Chang, L, Smith, GDW, Liu, C & Mittemeijer, EJJ (1992). Some aspects of atom-probe analysis of Fe-C and Fe-N systems. Surf Sci 266, 416423.
Stoffers, A, Barthel, J, Liebscher, CH, Gault, B, Cojocaru-Mirédin, O, Scheu, C & Raabe, D (2017). Correlating atom probe tomography with atomic-resolved scanning transmission electron microscopy: Example of segregation at silicon grain boundaries. Microsc Microanal 23(2), 291299.
Tang, F, Gault, B, Ringer, SP, Martin, P, Bendavid, A & Cairney, JM (2010). Microstructural investigation of Ti-Si-N hard coatings. Scr Mater 63, 192195.
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.
Thuillier, O, Danoix, F, Gouné, M & Blavette, D (2006). Atom probe tomography of the austenite–ferrite interphase boundary composition in a model alloy Fe–C–Mn. Scr Mater 55, 10711074.
Thuvander, M, Weidow, J, Angseryd, J, Falk, LKL, Liu, F, Sonestedt, M, Stiller, K & Andrén, H-O (2011). Quantitative atom probe analysis of carbides. Ultramicroscopy 111, 604608.
Van Landeghem, HP, Langelier, B, Gault, B, Panahi, D, Korinek, A, Purdy, GR & Zurob, HS (2017). Investigation of solute/interphase interaction during ferrite growth. Acta Mater 124.536543.
Van Landeghem, HP, Langelier, B, Panahi, D, Purdy, GR, Hutchinson, CR, Botton, GA & Zurob, HS (2016). Solute segregation during ferrite growth: Solute/interphase and substitutional/interstitial interactions. JOM 68, 13291334.
Vurpillot, F, Bostel, A & Blavette, D (2000 a). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129.
Vurpillot, F, Bostel, A, Cadel, E & Blavette, D (2000 b). The spatial resolution of 3D atom probe in the investigation of single-phase materials. Ultramicroscopy 84, 213224.
Vurpillot, F, Da Costa, G, Menand, A & Blavette, D (2001). Structural analyses in three-dimensional atom probe: A Fourier approach. J Microsc 203, 295302.
Wei, Y, Peng, Z, Kühbach, M, Breen, AJ, Legros, M, Larranaga, M, Mompiou, F & Gault, B (2019). 3D nanostructural characterisation of grain boundaries in atom probe data utilising machine learning methods. PLoS ONE.
Yao, L (2016). A filtering method to reveal crystalline patterns from atom probe microscopy desorption maps. MethodsX 3, 268273.
Yardley, VA & Payton, EJ (2014). Austenite–martensite/bainite orientation relationship: Characterisation parameters and their application. Mater Sci Technol 30, 11251130.
Zaefferer, S & Elhami, N-N (2014). Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater 75, 2050.
Zhang, M-X & Kelly, PM (2002). Accurate orientation relationship between ferrite and austenite in low carbon martensite and granular bainite. Scr Mater 47, 749755.
Zhao, H, De Geuser, F, Kwiatkowski da Silva, A, Szczepaniak, A, Gault, B, Ponge, D & Raabe, D (2018). Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy. Acta Mater 156, 318329.

Keywords

Reflections on the Analysis of Interfaces and Grain Boundaries by Atom Probe Tomography

  • Benjamin M. Jenkins (a1), Frédéric Danoix (a2), Mohamed Gouné (a3), Paul A.J. Bagot (a1), Zirong Peng (a4), Michael P. Moody (a1) and Baptiste Gault (a4) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.