Skip to main content Accessibility help
×
Home

Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns

  • Patrick G. Callahan (a1), McLean P. Echlin (a1), Tresa M. Pollock (a1) and Marc De Graef (a2)

Abstract

We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

Copyright

Corresponding author

* Corresponding author. pcallahan@engineering.ucsb.edu

References

Hide All
Alam, M.N., Blaokman, M. & Pashley, D.W. (1954). High-angle Kikuchi patterns. Proc R Soc Lond A Math Phys Eng Sci 221, 224242.
Altmann, F., Beyersdorfer, J., Sohisohka, J., Krause, M., Franz, G. & Kwakman, L. (2012). Cross section analysis of Cu filled TSVs based on high throughput plasma-FIB milling. In Proceedings of the 38th International Symposium on Testing and Failure Analysis, Phoenix, pp. 39–43. Materials Park, OH: ASM International.
Amoruso, S., Bruzzese, R., Wang, X., Nedialkov, N.N. & Atanasov, P.A. (2007). Femtosecond laser ablation of nickel in vacuum. J Phys D Appl Phys 40, 331.
Bargheer, M., Zhavoronkov, N., Gritsai, Y., Woo, J.C., Kim, D.S., Wo-erner, M. & Elsaesser, T. (2004). Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction. Science 306, 17711773.
Bonse, J., Rosenfeld, A. & Krüger, J. (2009). On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys 106, 104910.
Callahan, P.G. & DeGraef, M. (2013). Dynamical electron backscatter diffraction patterns. Part I: Pattern simulations. Microsc Microanal 19, 12551265.
Carey, J.E., Crouoh, C.H. & Mazur, E. (2003). Femtosecond-laser-assisted microstructuring of silicon surfaces. Opt Photonics News 14, 3236.
Chapman, M., Callahan, P.G. & DeGraef, M. (2016). Determination of sample surface topography using electron back-scatter diffraction patterns. Scripta Mater 120, 2326.
Desbois, G., Urai, J.L., Pérez-Willard, F., Radi, Z., Offern, S., Burkart, I., Kukla, P.A. & Wollenberg, U. (2013). Argon broad ion beam tomography in a cryogenic scanning electron microscope: A novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. J Microsc 249, 215235.
Dillon, S.J. & Rohrer, G.S. (2009). Characterization of the grain-boundary character and energy distributions of yttria using automated serial sectioning and EBSD in the FIB. J Am Ceram Soc 92, 15801585.
Douglas, J.E., Eohlin, M.P., Lenthe, W.C., Seshadri, R. & Pollock, T.M. (2015). Three-dimensional multimodal imaging and analysis of biphasic microstructure in a Ti-Ni-Sn thermoelectric material. APL Mater 3, 096107.
Durou, J.D., Falcone, M. & Sagona, M. (2008). Numerical methods for shape-from-shading: A new survey with benchmarks. Comput Vis Image Understanding 109, 2243.
Echlin, M.P., Mottura, A., Torbet, C.J. & Pollock, T.M. (2012). A new TriBeam system for three-dimensional multimodal materials analysis. Rev Sci Instrum 83, 023701.
Echlin, M.P., Mottura, A, Wang, M., Mignone, P.J., Riley, D.P., Franks, G.V. & Pollock, T.M. (2014). Three-dimensional characterization of the permeability of W-Cu composites using a new TriBeam technique. Acta Mater 64, 307315.
Echlin, M.P., Straw, M., Randolph, S., Filevioh, J. & Pollock, T.M. (2015). The TriBeam system: Femtosecond laser ablation in situ SEM. Mater Charact 100, 112.
Evangelidis, G.D. & Psarakis, E.Z. (2008). Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal 30, 18581865.
Feng, Q., Pioard, Y.N., Liu, H., Yalisove, S.M., Mourou, G. & Pollock, T.M. (2005). Femtosecond laser micromachining of a single-crystal superalloy. Script Mater 53, 511516.
Feng, Q., Pioard, Y.N., McDonald, J.P., Rompay, P.A.V., Yalisove, S.M. & Pollock, T.M. (2006). Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings. Mater Sci Eng A 430, 203207.
Frankot, R.T. & Chellappa, R. (1988). A method for enforcing integrability in shape from shading algorithms. IEEE Trans Pattern Anal 10, 439451.
Giannuzzi, L.A., Kempshall, B.W., Sohwarz, S.M., Lomness, J.K., Prenitzer, B.I. & Stevie, F.A. (2005). FIB Lift-Out Specimen Preparation Techniques. Boston, MA: Springer.
Horn, B.K.P. & Brooks, M.J. (1989). Shape from Shading. Cambridge, MA: MIT Press.
Huang, M., Zhao, F., Cheng, Y., Xu, N. & Xu, Z. (2009). Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 3, 40624070.
Jackson, J.B., Mourou, M., Whitaker, J.F. III, Duling, I.N., Williamson, S.L., Menu, M. & Mourou, G.A. (2008). Terahertz imaging for non-destructive evaluation of mural paintings. Optics Communications 281, 527532.
Jorgensen, D.J., Titus, M.S. & Pollock, T.M. (2015). Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl. Appl Surf Sci 353, 700707.
Joy, D.C. (1995). Monte Carlo Modeling for Electron Microscopy and Microanalysis. New York: Oxford University Press.
Joy, D.C. & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11, 176180.
Lenthe, W.C., Eohlin, M.P., Trenkle, A., Syha, M., Gumbsoh, P. & Pollock, T.M. (2015). Quantitative voxel-to-voxel comparison of TriBeam and DCT strontium titanate three-dimensional data sets. J Appl Crystallogr 48, 10341046.
Ma, S., McDonald, J.P., Tryon, B., Yalisove, S.M. & Pollock, T.M. (2007). Femtosecond laser ablation regimes in a single-crystal superalloy. Metall Mater Trans A 38, 23492357.
McDonald, J.P., Das, D.K., Nees, J.A., Pollock, T.M. & Yalisove, S.M. (2008a). Approaching non-destructive surface chemical analysis of CMSX-4 superalloy with double-pulsed laser induced breakdown spectroscopy. Spectrochim Acta B 63, 561565.
McDonald, J.P., Ma, S., Pollock, T.M., Yalisove, S.M. & Nees, J.A. (2008b). Femtosecond pulsed laser ablation dynamics and ablation morphology of Nickel based superalloy CMSX-4. J Appl Phys 103, 093111.
Necas, D. & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. Cent Eur J Phys 10, 181188.
Payton, E.J. & Nolze, G. (2013). The backscatter electron signal as an additional tool for phase segmentation in electron backscatter diffraction. Microsc Microanal 19, 929941.
Pilchak, A.L., Szozepanski, C.J., Shaffer, J.A., Salem, A.A. & Semiatin, S.L. (2013). Characterization of microstructure, texture, and microtexture in near-alpha titanium mill products. Metall Mater Trans A 44, 48814890.
Ram, F., Zaefferer, S. & Raabe, D. (2014). Kikuchi bandlet method for the accurate decon-volution and localization of Kikuchi bands in Kikuchi diffraction patterns. J Appl Crystallogr 47, 264275.
Roşca, D. (2010). New uniform grids on the sphere. Astron Astrophys 520, A63.
Rose-Petruck, C., Jimenez, R., Guo, T., Cavalleri, A., Siders, C.W., Rksi, F., Squier, J.A., Walker, B.C., Wilson, K.R. & Barty, C.P.J. (1999). Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310312.
Schwartz, A.J., Kumar, M., Adams, B.L. & Field, D.P. (Eds.) (2009). Electron Backscatter Diffraction in Materials Science, 2nd ed. New York, NY: Springer.
Semaltianos, N.G., Perrie, W., French, P., Sharp, M., Dearden, G., Logothetidis, S. & Watkins, K.G. (2009). Femtosecond laser ablation characteristics of nickel-based superalloy C263. Appl Phys A 94, 9991009.
Sipe, J.E., Young, J.F., Preston, J.S. & van Driel, H.M. (1983). Laser-induced periodic surface structure. I. Theory. Phys Rev B 27, 11411154.
Song, Y., Chen, X., Dabade, V., Shield, T.W. & James, R.D. (2013). Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 8588.
Titus, M.S., Eohlin, M.P., Gumbsoh, P. & Pollock, T.M. (2015). Dislocation injection in strontium titanate by femtosecond laser pulses. J Appl Phys 118, 075901.
Tull, B.R., Carey, J.E., Mazur, E., McDonald, J.P. & Yalisove, S.M. (2006). Silicon surface morphologies after femtosecond laser irradiation. MRS Bull 31, 626633.
Villechaise, P., Sabatier, L. & Girard, J.C. (2002). On slip band features and crack initiation in fatigued 316L austenitic stainless steel: Part 1: Analysis by electron back-scattered diffraction and atomic force microscopy. Mater Sci Eng A 323, 377385.
Whitehouse, D. (2002). Surfaces and Their Measurement. Philadelphia, PA: Kagan Page Science.
Wilkinson, A.J. & Britton, T.B. (2012). Strains, planes, and EBSD in materials science. Mater Today 15, 366376.
Winkelmann, A., Trager-Cowan, C., Sweeney, F., Day, A.P. & Parbrook, P. (2007). Many-beam dynamical simulation of electron backscatter diffraction patterns. Ultramicroscopy 107, 414421.
Zhang, R., Tsai, P.S., Cryer, J. & Shah, M. (1999). Shape from shading: A survey. IEEE Trans Pattern Anal 21, 690706.

Keywords

Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns

  • Patrick G. Callahan (a1), McLean P. Echlin (a1), Tresa M. Pollock (a1) and Marc De Graef (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed