Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T13:42:45.042Z Has data issue: false hasContentIssue false

Quantitative Imaging of FRET-Based Biosensors for Cell- and Organelle-Specific Analyses in Plants

Published online by Cambridge University Press:  16 February 2016

Swayoma Banerjee
Affiliation:
Department of Biology, Texas A&M University, College Station, TX 77843, USA
Luis Rene Garcia
Affiliation:
Department of Biology, Texas A&M University, College Station, TX 77843, USA
Wayne K. Versaw*
Affiliation:
Department of Biology, Texas A&M University, College Station, TX 77843, USA
*
*Corresponding author. wversaw@tamu.edu
Get access

Abstract

Genetically encoded Förster resonance energy transfer (FRET)-based biosensors have been used to report relative concentrations of ions and small molecules, as well as changes in protein conformation, posttranslational modifications, and protein–protein interactions. Changes in FRET are typically quantified through ratiometric analysis of fluorescence intensities. Here we describe methods to evaluate ratiometric imaging data acquired through confocal microscopy of a FRET-based inorganic phosphate biosensor in different cells and subcellular compartments of Arabidopsis thaliana. Linear regression was applied to donor, acceptor, and FRET-derived acceptor fluorescence intensities obtained from images of multiple plants to estimate FRET ratios and associated location-specific spectral correction factors with high precision. FRET/donor ratios provided a combination of high dynamic range and precision for this biosensor when applied to the cytosol of both root and leaf cells, but lower precision when this ratiometric method was applied to chloroplasts. We attribute this effect to quenching of donor fluorescence because high precision was achieved with FRET/acceptor ratios and thus is the preferred ratiometric method for this organelle. A ligand-insensitive biosensor was also used to distinguish nonspecific changes in FRET ratios. These studies provide a useful guide for conducting quantitative ratiometric studies in live plants that is applicable to any FRET-based biosensor.

Type
Special Issue on Imaging Plant Biology
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G.J., Kwak, J.M., Chu, S.P., Llopis, J., Tsien, R.Y., Harper, J.F. & Schroeder, J.I. (1999). Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19(6), 735747.CrossRefGoogle ScholarPubMed
Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic. Escherichia coli. J Bacteriol 62(8), 293300.Google ScholarPubMed
Brown, C.M. (2007). Fluorescence microscopy—Avoiding the pitfalls. J Cell Sci 120(10), 17031705.CrossRefGoogle ScholarPubMed
Chaudhuri, B., Hormann, F. & Frommer, W.B. (2011). Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. J Exp Bot 62(7), 24112417.Google Scholar
Chiou, T.J. & Lin, S.I. (2011). Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62, 185206.Google Scholar
Clough, S.J. & Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J 16(6), 735743.CrossRefGoogle Scholar
Day, R.N. & Davidson, M.W. (2012). Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells. Bioessays 34(5), 341350.CrossRefGoogle ScholarPubMed
Deuschle, K., Chaudhuri, B., Okumoto, S., Lager, I., Lalonde, S. & Frommer, W.B. (2006). Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18(9), 23142325.Google Scholar
Deuschle, K., Okumoto, S., Fehr, M., Looger, L.L., Kozhukh, L. & Frommer, W.B. (2005). Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14(9), 23042314.CrossRefGoogle ScholarPubMed
Feige, J.N., Sage, D., Wahli, W., Desvergne, B. & Gelman, L. (2005). PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 68(1), 5158.CrossRefGoogle ScholarPubMed
Frommer, W.B., Davidson, M.W. & Campbell, R.E. (2009). Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38(10), 28332841.Google Scholar
Gjetting, S.K., Schulz, A. & Fuglsang, A.T. (2013). Perspectives for using genetically encoded fluorescent biosensors in plants. Front Plant Sci 4, 234. doi:210.3389/fpls.2013.00234.CrossRefGoogle ScholarPubMed
Gout, E., Bligny, R., Douce, R., Boisson, A.M. & Rivasseau, C. (2011). Early response of plant cell to carbon deprivation: In vivo 31P-NMR spectroscopy shows a quasi-instantaneous disruption on cytosolic sugars, phosphorylated intermediates of energy metabolism, phosphate partitioning, and intracellular pHs. New Phytol 189(1), 135147.CrossRefGoogle Scholar
Gu, H., Lalonde, S., Okumoto, S., Looger, L.L., Scharff-Poulsen, A.M., Grossman, A.R., Kossmann, J., Jakobsen, I. & Frommer, W.B. (2006). A novel analytical method for in vivo phosphate tracking. FEBS Lett 580(25), 58855893.Google Scholar
Hum, J.M., Siegel, A.P., Pavalko, F.M. & Day, R.N. (2012). Monitoring biosensor activity in living cells with fluorescence lifetime imaging microscopy. Int J Mol Sci 13(11), 1438514400.Google Scholar
Jones, A.M., Danielson, J.A., Manojkumar, S.N., Lanquar, V., Grossmann, G. & Frommer, W.B. (2014). Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. Elife 3, e01741.Google Scholar
Jones, A.M., Grossmann, G., Danielson, J.A., Sosso, D., Chen, L.Q., Ho, C.H. & Frommer, W.B. (2013). In vivo biochemistry: Applications for small molecule biosensors in plant biology. Curr Opin Plant Biol 16(3), 389395.CrossRefGoogle ScholarPubMed
Kanno, S., Yamawaki, M., Ishibashi, H., Kobayashi, N.I., Hirose, A., Tanoi, K., Nussaume, L. & Nakanishi, T.M. (2012). Development of real-time radioisotope imaging systems for plant nutrient uptake studies. Philos Trans R Soc Lond B Biol Sci 367(1595), 15011508.Google Scholar
Keinath, N.F., Waadt, R., Brugman, R., Schroeder, J.I., Grossmann, G., Schumacher, K. & Krebs, M. (2015). Live cell imaging with R-GECO1 sheds light on flg22- and chitin-induced transient [Ca(2+)]cyt patterns in Arabidopsis. Mol Plant 8(8), 11881200.Google Scholar
Krebs, M., Held, K., Binder, A., Hashimoto, K., Den Herder, G., Parniske, M., Kudla, J. & Schumacher, K. (2012). FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca(2)(+) dynamics. Plant J 69(1), 181192.Google Scholar
Lam, A.J., St-Pierre, F., Gong, Y., Marshall, J.D., Cranfill, P.J., Baird, M.A., McKeown, M.R., Wiedenmann, J., Davidson, M.W., Schnitzer, M.J., Tsien, R.Y. & Lin, M.Z. (2012). Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9(10), 10051012.Google Scholar
Lee, D.W., Lee, S., Lee, G.-J., Lee, K.H., Kim, S., Cheong, G.-W. & Hwang, I. (2006). Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco. Plant Physiol 140(2), 466483.Google Scholar
Littlejohn, G.R., Gouveia, J.D., Edner, C., Smirnoff, N. & Love, J. (2010). Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll. New Phytol 186(4), 10181025.Google Scholar
Miyawaki, A. (2003). Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4(3), 295305.CrossRefGoogle ScholarPubMed
Mukherjee, P., Banerjee, S., Wheeler, A., Ratliff, L.A., Irigoyen, S., Garcia, L.R., Lockless, S.W. & Versaw, W.K. (2015). Live imaging of inorganic phosphate in plants with cellular and subcellular resolution. Plant Physiol 167(3), 628638.CrossRefGoogle ScholarPubMed
Muller, S.M., Galliardt, H., Schneider, J., Barisas, B.G. & Seidel, T. (2013). Quantification of Forster resonance energy transfer by monitoring sensitized emission in living plant cells. Front Plant Sci 4, 413. doi:410.3389/fpls.2013.00413.Google Scholar
Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473497.CrossRefGoogle Scholar
Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. (2004). Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101(29), 1055410559.CrossRefGoogle ScholarPubMed
Okumoto, S. (2014). Quantitative imaging approaches for small-molecule measurements using FRET sensors in plants. Methods Mol Biol 1083, 5564.Google Scholar
Okumoto, S., Jones, A. & Frommer, W.B. (2012). Quantitative imaging with fluorescent biosensors. Ann Rev Plant Biol 63, 663706.CrossRefGoogle ScholarPubMed
Plaxton, W.C. & Tran, H.T. (2011). Metabolic adaptations of phosphate-starved plants. Plant Physiol 156(3), 10061015.CrossRefGoogle ScholarPubMed
Pratt, J., Boisson, A.M., Gout, E., Bligny, R., Douce, R. & Aubert, S. (2009). Phosphate (Pi) starvation effect on the cytosolic Pi concentration and Pi exchanges across the tonoplast in plant cells: An in vivo 31P-nuclear magnetic resonance study using methylphosphonate as a Pi analog. Plant Physiol 151(3), 16461657.Google Scholar
Raghothama, K. (1999). Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50, 665693.Google Scholar
Rebeille, F., Bligny, R. & Douce, R. (1984). Is the cytosolic Pi concentration a limiting factor for plant cell respiration? Plant Physiol 74(2), 355359.Google Scholar
Rincon-Zachary, M., Teaster, N.D., Sparks, J.A., Valster, A.H., Motes, C.M. & Blancaflor, E.B. (2010). Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations. Plant Physiol 152(3), 14421458.Google Scholar
Roszik, J., Lisboa, D., Szollosi, J. & Vereb, G. (2009). Evaluation of intensity-based ratiometric FRET in image cytometry—Approaches and a software solution. Cytometry A 75(9), 761767.Google Scholar
Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. (2005). A guide to choosing fluorescent proteins. Nat Methods 2(12), 905909.Google Scholar
Sharkey, T.D. & Vanderveer, P.J. (1989). Stromal phosphate concentration is low during feedback limited photosynthesis. Plant Physiol 91(2), 679684.Google Scholar
van Rheenen, J., Langeslag, M. & Jalink, K. (2004). Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys J 86(4), 25172529.CrossRefGoogle Scholar
Vance, C.P., Uhde-Stone, C. & Allan, D.L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol 157, 423447.Google Scholar
Waadt, R., Hitomi, K., Nishimura, N., Hitomi, C., Adams, S.R., Getzoff, E.D. & Schroeder, J.I. (2014). FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. Elife 3, e01739.CrossRefGoogle ScholarPubMed
Walker, D.A. & Sivak, M.N. (1986). Photosynthesis and phosphate: A cellular affair? Trends Biochem Sci 11, 176179.CrossRefGoogle Scholar
Wallrabe, H. & Periasamy, A. (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotech 16(1), 1927.Google Scholar
Xia, Z. & Liu, Y. (2001). Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81(4), 23952402.Google Scholar
Yang, H., Bogner, M., Stierhof, Y.D. & Ludewig, U. (2010). H-independent glutamine transport in plant root tips. PLoS One 5(1), e8917.Google Scholar
Zhang, Z., Liao, H. & Lucas, W.J. (2014). Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56(3), 192220.Google Scholar