Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T16:54:55.147Z Has data issue: false hasContentIssue false

Quantitative High-Resolution Transmission Electron Microscopy of Single Atoms

Published online by Cambridge University Press:  12 December 2011

Björn Gamm*
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
Holger Blank
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
Radian Popescu
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
Reinhard Schneider
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
André Beyer
Affiliation:
Physik Supramolekularer Systeme, Universität Bielefeld, 33501 Bielefeld, Germany
Armin Gölzhäuser
Affiliation:
Physik Supramolekularer Systeme, Universität Bielefeld, 33501 Bielefeld, Germany
Dagmar Gerthsen
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
*
Corresponding author. E-mail: gamm@kit.edu
Get access

Abstract

Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.

Type
Techniques Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.CrossRefGoogle ScholarPubMed
Cowley, J.M. (1992). International Tables for Crystallography. Vol. C. Hoboken, NJ: Wiley, Inc.Google Scholar
Cowley, J.M. & Moodie, A.F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10, 609619.CrossRefGoogle Scholar
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of single atoms. Science 12, 13381340.Google Scholar
Doyle, P.A. & Turner, P.S. (1968). Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Crystallogr 24, 390397.CrossRefGoogle Scholar
Iijima, S. (1977). Observation of single and clusters of atoms in bright field electron microscopy. Optik 48, 193214.Google Scholar
Kirkland, A.I., Meyer, R.R. & Chang, L.Y. (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12, 461468.Google Scholar
Koizumi, H., Oshima, Y., Kondo, Y. & Takayanagi, K. (2001). Quantitative high-resolution microscopy on a suspended chain of gold atoms. Ultramicroscopy 88(1), 1724.Google Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571574.Google Scholar
Meyer, J., Girit, C.O., Crommie, M.F. & Zettl, A. (2008). Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319322.Google Scholar
Meyer, J.C., Kurasch, S., Park, H.J., Skakalova, V., Künzel, D., Gross, A., Chuvilin, A., Algara-Siller, G., Roth, S., Iwasaki, T., Starke, U., Smet, J.H. & Kaiser, U. (2011). Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nat Mater 10(3), 209215.Google Scholar
Ohnishi, H., Kondo, Y. & Takayanagi, K. (1998). Quantized conductance through individual rows of suspended gold atoms. Nature 395(6704), 780783.Google Scholar
Rosenauer, A. & Schowalter, M. (2006). STEMsim program. Available at http://www.ifp.unibremen.de/tem/stemsim.html.Google Scholar
Sears, V.F. & Shelley, S.A. (1991). Debye-Waller factors for elemental crystals. Acta Crystallogr A 47, 441446.Google Scholar
Thust, A. (2009). High-resolution transmission electron microscopy on an absolute contrast scale. Phys Rev Lett 102, 220801.Google Scholar
Turchanin, A., Käfer, D., El-Desawy, M., Wöll, C., Witte, G. & Gölzhäuser, A. (2009). A molecular mechanisms of electron-induced cross-linking in aromatic SAMs. Langmuir 25(13), 73427352.Google Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.Google Scholar
Wade, R.H. & Frank, J. (1977). Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49, 8192.Google Scholar
Weickenmeier, A. & Kohl, H. (1991). Computation of absorptive form factors for high-energy electron diffraction. Acta Crystallogr 47, 590597.CrossRefGoogle Scholar
Weickenmeier, A., Nüchter, W. & Mayer, J. (1995). Quantitative characterization of point spread function and detection quantum efficiency for a YAG scintillator slow scan CCD camera. Optik (Stuttgart) 99(4), 99147.Google Scholar