Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T00:37:13.392Z Has data issue: false hasContentIssue false

Quantification of Subsurface Damage in a Brittle Insulating Ceramic by Three-Dimensional Focused Ion Beam Tomography

Published online by Cambridge University Press:  04 March 2011

N. Payraudeau*
Affiliation:
Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin 2, Ireland
D. McGrouther
Affiliation:
S.U.P.A, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
K.U. O'Kelly
Affiliation:
Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin 2, Ireland
*
Corresponding author. E-mail: payraudn@tcd.ie
Get access

Abstract

In this study, we present a fully automated method to investigate and reconstruct the three-dimensional crack structure beneath an indent in a highly insulating material. This work concentrates on issues arising from a long automatic acquisition process, the insulating nature of the specimen, and the introduction of minimal damage to the original cracks resulting from indentation.

Type
Material Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Claves, S.R., Bandar, A.R., Misiolek, W.Z. & Michael, J.R. (2004). Three-dimensional (3D) reconstruction of AlFeSi intermetallic particles in 6xxx aluminum alloys using the focused ion beam (FIB). Microsc Microanal 10, 11381139.CrossRefGoogle Scholar
Elfallagh, F. & Inkson, B.J. (2008). 3D tomographic analysis of crack morphologies in alumina and glass using FIB microscopy. J Phys Conf Ser 126, 14.CrossRefGoogle Scholar
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J. (2003). Scanning Electron Microscopy and X-ray Microanalysis. New York: Springer.CrossRefGoogle Scholar
Holzapfel, C., Schaf, W., Marx, M., Vehoff, H. & Mucklich, F. (2007). Interaction of cracks with precipitates and grain boundaries: Understanding crack growth mechanisms through focused ion beam tomography. Scripta Mater 56, 697700.CrossRefGoogle Scholar
Holzer, L., Indutnyi, F., Gasser, P.H., Munch, B. & Wegmann, M. (2004). Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J Microsc 216, 8495.CrossRefGoogle ScholarPubMed
Inkson, B.J., Leclere, D., Elfallagh, F. & Derby, B. (2006). The effect of focused ion beam machining on residual stress and crack morphologies in alumina. J Phys Conf Ser 26, 219222.CrossRefGoogle Scholar
Inkson, B.J., Wu, H.Z., Steer, T. & Möbus, G. (2001). 3D mapping of subsurface cracks in alumina using FIB. Mater Res Soc Symp Proc 649, Q3.7.Google Scholar
Kammer, D., Mendoza, R., Barnett, S.A. & Voorhees, P.W. (2005). The three-dimensional microstructure of materials: Measurement and analysis. Microsc Microanal 11, 7273.Google Scholar
Kato, M., Ito, T., Aoyama, Y., Sawa, K., Kaneko, T., Kawase, N. & Jinnai, H. (2007). Three-dimensional structural analysis of a block copolymer by scanning electron microscopy combined with a focused ion beam. J Polymer Sci B: Polymer Phys 45, 677683.CrossRefGoogle Scholar
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. (1996). Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116, 7176.CrossRefGoogle ScholarPubMed
Matthijs De Winter, D.A., Schneijdenberg, C.T.W.M., Lebbink, M.N., Lich, B., Verkleij, A.J., Drury, M.R. & Humbel, B.M. (2009). Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J Microsc 233, 372383.CrossRefGoogle Scholar
McGrouther, D. & Munroe, P.R. (2007). Imaging and analysis of 3-D structure using a dual beam FIB. Microsc Res Techniq 70, 186194.CrossRefGoogle ScholarPubMed
Schaffer, M., Wagner, J., Schaffer, B., Schmied, M. & Mulders, H. (2007). Automated three-dimensional X-ray analysis using a dual-beam FIB. Ultramicroscopy 107, 587597.CrossRefGoogle ScholarPubMed
Steer, T.J., Möbus, G., Kraft, O., Wagner, T. & Inkson, B.J. (2001). 3D FIB and AFM mapping of nanoindentation zones. Mater Res Soc Symp Proc 649, 3.3.13.3.6.Google Scholar
Steer, T.J., Möbus, G., Kraft, O., Wagner, T. & Inkson, B.J. (2002). 3-D-focused ion beam mapping of nanoindentation zones in a Cu-Ti multilayered coating. Thin Solid Films 413, 147154.CrossRefGoogle Scholar
Uchic, M.D., Groeber, M.A., Dimiduk, D.M. & Simmons, J.P. (2006). 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Mater 55, 2328.CrossRefGoogle Scholar
Williams, R., Bhattacharyya, D., Viswanathan, G.B., Banerjee, R. & Fraser, H.L. (2004). Application of FIB-tomography to the study of microstructures in titanium alloys. Microsc Microanal 10(S2), 11781179 (CD-ROM).CrossRefGoogle Scholar
Williams, R., Uchic, M., Dimiduk, D. & Fraser, H.L. (2006). Three dimensional reconstruction of alpha laths in alpha/beta titanium alloys by serial sectioning with a FEI NOVA 600. Microsc Microanal 12(S2), 12341235 (CD-ROM).CrossRefGoogle Scholar
Xie, Z.H., Munroe, P.R., McGrouther, D., Singh, R.K., Hoffman, M., Bendavid, A., Martin, P.J. & Yew, S. (2006). Three-dimensional study of indentation-induced cracks in an amorphous carbon coating on a steel substrate. J Mater Res 21, 26002610.CrossRefGoogle Scholar