Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-08T04:53:27.005Z Has data issue: false hasContentIssue false

Polarization Second Harmonic Generation Discriminates Between Fresh and Aged Starch-Based Adhesives Used in Cultural Heritage

Published online by Cambridge University Press:  13 September 2016

Sotiris Psilodimitrakopoulos*
Affiliation:
Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), 100 N. Plastira Street, 71110 Heraklion, Crete, Greece
Evaggelia Gavgiotaki
Affiliation:
Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), 100 N. Plastira Street, 71110 Heraklion, Crete, Greece Medical School, University of Crete, 71003 Heraklion, Crete, Greece
Kristallia Melessanaki
Affiliation:
Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), 100 N. Plastira Street, 71110 Heraklion, Crete, Greece
Vassilis Tsafas
Affiliation:
Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), 100 N. Plastira Street, 71110 Heraklion, Crete, Greece Department of Physics, University of Crete, 71003 Heraklion, Crete, Greece
George Filippidis
Affiliation:
Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), 100 N. Plastira Street, 71110 Heraklion, Crete, Greece
*
*Corresponding author.sopsilo@iesl.forth.gr
Get access

Abstract

In this work, we report that polarization second harmonic generation (PSHG) microscopy, commonly used in biomedical imaging, can quantitatively discriminate naturally aged from fresh starch-based glues used for conservation or restoration of paintings, works of art on paper, and books. Several samples of fresh and aged (7 years) flour and starch pastes were investigated by use of PSHG. In these types of adhesives, widely used in cultural heritage conservation, second harmonic generation (SHG) contrast originates primarily from the starch granules. It was found that in aged glues, the starch SHG effective orientation (SHG angle, θ) shifts to significantly higher values in comparison to the fresh granules. This shift is attributed to the different degree of granule hydration between fresh and aged adhesives. Thus noninvasive high-resolution nonlinear scattering can be employed to detect and quantify the degree of deterioration of restoration adhesives and to provide guidance toward future conservation treatments.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amat-Roldan, I., Psilodimitrakopoulos, S., Loza-Alvarez, P. & Artigas, D. (2010). Fast image analysis in polarization SHG microscopy. Opt Express 18(16), 1720917219.Google Scholar
Campagnola, P.J. & Loew, L.M. (2003). Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21, 13561360.CrossRefGoogle ScholarPubMed
Cisek, R., Spencer, L., Prent, N., Zigmantas, D., Espie, G.S. & Barzda, V. (2009). Optical microscopy in photosynthesis. Photosynth Res 102(2–3), 111141.Google Scholar
Cisek, R., Tokarz, D., Steup, M., Tetlow, I.J., Emes, M.J., Hebelstrup, K.H., Blennow, A. & Barzda, V. (2015). Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration. Biomed Opt Express 6(10), 36943700.Google Scholar
Cox, G.C., Moreno, N. & Feijó, J. (2005). Second-harmonic imaging of plant polysaccharides. J Biomed Opt 10(2), 024013.Google Scholar
Filippidis, G., Mari, M., Kelegkouri, L., Philippidis, A., Selimis, A., Melessanaki, K., Sygletou, M. & Fotakis, C. (2014). Assessment of in-depth degradation of artificially aged triterpenoid paint varnishes using nonlinear microscopy techniques. Microsc and Microanal 21(2), 510.Google Scholar
Filippidis, G., Melessanaki, K. & Fotakis, C. (2009). Second and third harmonic generation measurements of glues used for lining textile supports of painted artworks. Anal Bioanal Chem 395, 2161.CrossRefGoogle ScholarPubMed
Gettens, R.J. & Stout, G.L. (1966). Painting Materials: A Short Encyclopedia. Mineola, New York: Dover Art Instruction.Google Scholar
Gualda, E.J., Filippidis, G., Melessanaki, K. & Fotakis, C. (2009). Third-harmonic generation and multi-photon excitation fluorescence imaging microscopy techniques for online art conservation diagnosis. Appl Spectrosc 63(3), 280.CrossRefGoogle ScholarPubMed
Gusachenko, I., Latour, G. & Schanne-Klein, M.C. (2010). Polarization-resolved second harmonic microscopy in anisotropic thick tissues. Opt Express 18, 1933919352.Google Scholar
Hories, C.V. (2000). Materials for Conservation: Organic Consolidants, Adhesives and Coatings (Conservation and Museology). Oxford: Butterworth & Heinemann.Google Scholar
Kapsokalyvas, D., Cicchi, R., Bruscino, N., Alfieri, D., Prignano, F., Massi, D., Lotti, T. & Pavone, F.S. (2014). In-vivo imaging of psoriatic lesions with polarization multispectral dermoscopy and multiphoton microscopy. Biomed Opt Express 5, 24052419.CrossRefGoogle ScholarPubMed
Kenneth, K. (1965). Vegetable adhesives. In Adhesion and Adhesives, Houwinte R. & Salomon G. (Eds.), pp. 167185. London: Elsevier.Google Scholar
Latour, G., Echard, J.P., Didier, M. & Schanne-Klein, M.C. (2012). In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy. Opt Express 20(22), 24623.Google Scholar
Lombardo, M., Merino, D., Loza-Alvarez, P. & Lombardo, G. (2015). Translational label-free nonlinear imaging biomarkers to classify the human corneal microstructure. Biomed Opt Express 6(8), 28032818.CrossRefGoogle ScholarPubMed
Matteini, P., Cicchi, R., Ratto, F., Kapsokalyvas, D., Rossi, F., de Angelis, M., Pavone, F.P. & Pini, R. (2012). Thermal transitions of fibrillar collagen unveiled by second-harmonic generation microscopy of corneal stroma. Biophys J 103(6), 11791187.Google Scholar
Maynor, C.I. & Reyden, D. (1989). Adhesives. Chapter 46. In Paper Conservation Catalog, Walter H. & Smith C. (Eds.), pp. 1128. Washington, DC: American Institute for Conservation Book and Paper Group.Google Scholar
Moreaux, L., Sandre, Ο. & Mertz, J. (2000). Membrane imaging by second-harmonic generation microscopy. J Opt Soc Am B 17, 16851694.CrossRefGoogle Scholar
Nicolaus, K. (1999). The Restoration of Paintings. Cologne: Könemann Veragsgesellschaft mbH.Google Scholar
Obanni, M. & BeMiller, J.N. (1996). Ghost microstructures of starch from different botanical sources. Cereal Chem 73, 333337.Google Scholar
Olivier, N., Aptel, F., Plamann, K., Schanne-Klein, M.C. & Beaurepaire, E. (2010). Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea. Opt Express 18(5), 50285040.CrossRefGoogle ScholarPubMed
Psilodimitrakopoulos, S., Amat-Roldan, I., Loza-Alvarez, P. & Artigas, D. (2012). Effect of molecular organization on the image histograms of polarization SHG microscopy. Biomed Opt Express 3(10), 26812693.CrossRefGoogle ScholarPubMed
Psilodimitrakopoulos, S., Petegnief, V., Vera, N., Hernandez, O., Artigas, D., Planas, A.M. & Loza-Alvarez, P. (2013). Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons. Biophys J 104, 968.Google Scholar
Psilodimitrakopoulos, S., Santos, S.I.C.O., Amat-Roldan, I., Thayil, A.K.N., Artigas, D. & Loza-Alvarez, P. (2009). In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization sensitive second harmonic generation microscopy. J Biomed Opt 14(1), 014001.CrossRefGoogle ScholarPubMed
Refregier, P., Roche, M. & Brasselet, S. (2011). Precision analysis in polarization-resolved second harmonic generation microscopy. Opt Lett 36, 21492151.Google Scholar
Tanaka, Y., Hase, E., Fukushima, S., Ogura, Y., Yamashita, T., Hirao, T., Araki, T. & Yasui, T. (2014). Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin. Biomed Opt Express 5, 10991113.CrossRefGoogle ScholarPubMed
Teulon, C., Gusachenko, I., Latour, G. & Schanne-Klein, M.C. (2015). Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy. Opt Express 23(7), 93139328.CrossRefGoogle ScholarPubMed
Tiaho, F., Recher, G. & Rouède, D. (2007). Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy. Opt Express 15(19), 1228612295.Google Scholar
Vincent, D. (1988). A study of the properties of aged starch paste (Furu-Nori). In The Conservation of Far Eastern Art, Mills J.S., Maynor P., Reyden D. & Yamasaki K. (Eds.), pp. 79. Kyoto: Kyoto Congress Preprints.Google Scholar
Waigh, T.A., Hopkinson, I. & Donald, A.M. (1997). Analysis of the native structure of starch granules with X-ray microfocus diffraction. Macromolecules 30(13), 38133820.CrossRefGoogle Scholar