Skip to main content Accessibility help

A Piezoelectric Goniometer Inside a Transmission Electron Microscope Goniometer

  • Wei Guan (a1), Aiden Lockwood (a1), Beverley J. Inkson (a1) and Günter Möbus (a1)


Piezoelectric nanoactuators, which can provide extremely stable and reproducible positioning, are rapidly becoming the dominant means for position control in transmission electron microscopy. Here we present a second-generation miniature goniometric nanomanipulation system, which is fully piezo-actuated with ultrafine step size for translation and rotation, programmable, and can be fitted inside a hollowed standard specimen holder for a transmission electron microscope (TEM). The movement range of this miniaturized drive is composed of seven degrees of freedom: three fine translational movements (X, Y, and Z axes), three coarse translational movements along all three axes, and one rotational movement around the X-axis with an integrated angular sensor providing absolute rotation feedback. The new piezoelectric system independently operates as a goniometer inside the TEM goniometer. In situ experiments, such as tomographic tilt without missing wedge and differential tilt between two specimens, are demonstrated.


Corresponding author

Corresponding author. E-mail:
Corresponding author. E-mail:


Hide All
Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. (2004). Image processing with ImageJ. Biophotonics Int 11(7), 3642.
Bobji, M.S., Pethica, J.B. & Inkson, B.J. (2005). Indentation mechanics of Cu-Be quantified by an in situ transmission electron microscopy mechanical probe. J Mater Res 20(10), 27262732.
Bobji, M.S., Ramanujan, C.S., Pethica, J.B. & Inkson, B.J. (2006). A miniaturized TEM nanoindenter for studying material deformation in situ. Meas Sci Technol 17(6), 13241329.
Briston, K.J., Peng, Y., Cullis, A.G. & Inkson, B.J. (2010). Fabrication of carbon nanotubes by electrical breakdown of carbon-coated Au nanowires. Mater Lett 64(14), 15831586.
Dahmen, U. (2007). A status report on the TEAM project. Microsc Microanal 13(S2), 11501151 (CD-ROM).
De Hosson, J.T.M., Soer, W.A., Minor, A.M., Shan, Z.W., Stach, E.A., Asif, S.A.S. & Warren, O.L. (2006). In situ TEM nanoindentation and dislocation-grain boundary interactions: A tribute to David Brandon. J Mater Sci 41(23), 77047719.
Erts, D., Olin, H., Ryen, L., Olsson, E. & Thölén, A. (2000). Maxwell and Sharvin conductance in gold point contacts investigated using TEM-STM. Phys Rev B 61(19), 1272512727.
Frank, J. (2006). Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell. New York: Springer.
Fukuda, T., Nakajima, M., Liu, P. & ElShimy, H. (2009). Nanofabrication, nanoinstrumentation and nanoassembly by nanorobotic manipulation. Int J Robotics Res 28(4), 537547.
Gontard, L.C., Dunin-Borkowski, R.E. & Ozkaya, D. (2008). Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J Microsc Oxford 232(2), 248259.
Iancu, C.V., Wright, E.R., Benjamin, J., Tivol, W.F., Dias, D.P., Murphy, G.E., Morrison, R.C., Heymann, J.B. & Jensen, G.J. (2005). A “flip-flop” rotation stage for routine dual-axis electron cryotomography. J Struct Biol 151(3), 288297.
Kamino, T., Yaguchi, T., Konno, M., Ohnishi, T. & Ishitani, T. (2004). A method for multidirectional TEM observation of a specific site at atomic resolution. J Electron Microsc 53(6), 583588.
Kizuka, T., Yamada, K., Deguchi, S., Naruse, M. & Tanaka, N. (1997). Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys Rev B 55(12), R7398R7401.
Lo, W.K. & Spence, J.C.H. (1993). Investigation of STM image artifacts by in situ reflection electron-microscopy. Ultramicroscopy 48(4), 433444.
Lockwood, A.J., Bobji, M.S., Bunyan, R.J.T. & Inkson, B.J. (2010a). Cyclic deformation and nano-contact adhesion of MEMS nano-bridges by in-situ TEM nanomechanical testing. J Phys Conf Ser 241(1), 012056.
Lockwood, A.J., Wang, J.J., Gay, R. & Inkson, B.J. (2008). Characterising performance of TEM compatible nano manipulation slip-stick inertial sliders against gravity. J Phys Conf Ser 126(1), 012096.
Lockwood, A.J., Wedekind, J., Gay, R.S., Bobji, M.S., Amavasai, B., Howarth, M., Möbus, G. & Inkson, B.J. (2010b). Advanced transmission electron microscope triboprobe with automated closed-loop nanopositioning. Meas Sci Technol 21(7), 075901.
Lu, Y., Huang, J.Y., Wang, C., Sun, S.H. & Lou, J. (2010). Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5(3), 218224.
Mastronarde, D.N. (1997). Dual-axis tomography: An approach with alignment methods that preserve resolution. J Struct Biol 120(3), 343352.
Medford, B.D., Rogers, B.L., Laird, D., Berdunov, N., Lockwood, A.J., Gnanavel, T., Guan, W., Wang, J.J., Möbus, G., Inkson, B.J. & Beton, P.H. (2010). A novel tripod-driven platform for in-situ positioning of samples and electrical probes in a TEM. J Phys Conf Ser 241(1), 012057.
Messaoudi, C., Boudier, T., Sorzano, C.O.S. & Marco, S. (2007). TomoJ: Tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288297.
Midgley, P.A., Ward, E.P.W., Hungria, A.B. & Thomas, J.M. (2007). Nanotomography in the chemical, biological and materials sciences. Chem Soc Rev 36(9), 14771494.
Minor, A.M., Asif, S.A.S., Shan, Z.W., Stach, E.A., Cyrankowski, E., Wyrobek, T.J. & Warren, O.L. (2006). A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5(9), 697702.
Möbus, G. & Inkson, B.J. (2007). Nanoscale tomography in materials science. Mater Today 10(12), 1825.
Spence, J.C.H. (1988). A scanning tunneling microscope in a side-entry holder for reflection electron-microscopy in the Philips Em400. Ultramicroscopy 25(2), 165169.
Stach, E.A. (2008). Real-time observations with electron microscopy. Mater Today 11, 5058.
Stach, E.A., Freeman, T., Minor, A.M., Owen, D.K., Cumings, J., Wall, M.A., Chraska, T., Hull, R., Morris, J.W., Zettl, A. & Dahmen, U. (2001). Development of a nanoindenter for in situ transmission electron microscopy. Microsc Microanal 7(6), 507517.
Svensson, K., Jompol, Y., Olin, H. & Olsson, E. (2003). Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion. Rev Sci Instrum 74(11), 49454947.
Wall, M.A. & Dahmen, U. (1998). An in situ nanoindentation specimen holder for a high voltage transmission electron microscope. Microsc Res Techniq 42(4), 248254.
Wang, J.J., Lockwood, A.J., Gay, R. & Inkson, B.J. (2008). Characterising ambient and vacuum performance of a miniaturised TEM nanoindenter for in-situ material deformation. J Phys Conf Ser 126(1), 012095.
Wang, J.J., Lockwood, A.J., Peng, Y., Xu, X., Bobji, M.S. & Inkson, B.J. (2009). The formation of carbon nanostructures by in situ TEM mechanical nanoscale fatigue and fracture of carbon thin films. Nanotechnology 20(30), 305703.
Warren, O.L., Shan, Z.W., Asif, S.A.S., Stach, E.A., Morris, J.W. & Minor, A.M. (2007). In situ nanoindentation in the TEM. Mater Today 10(4), 5960.
Wiesendanger, R. (1994). Scanning Probe Microscopy and Spectroscopy: Methods and Applications. Cambridge, UK: Cambridge University Press.
Xu, X.J., Lockwood, A.J., Guan, W., Gay, R., Saghi, Z., Wang, J.J., Peng, Y., Inkson, B.J. & Möbus, G. (2008). MRT letter: Full-tilt electron tomography with a piezo-actuated rotary drive. Microsc Res Techniq 71(11), 773777.
Xu, X.J., Saghi, Z., Gay, R. & Möbus, G. (2007). Reconstruction of 3D morphology of polyhedral nanoparticles. Nanotechnology 18(22), 225501225508.
Yoshida, K., Ikuhara, Y.H., Takahashi, S., Hirayama, T., Saito, T., Sueda, S., Tanaka, N. & Gai, P.L. (2009). The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 20(31), 315703.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed