Skip to main content Accessibility help

Nonscanning Three-Dimensional Optical Microscope Based on the Reflectivity-Height Transformation for Biological Measurements

  • Ming-Hung Chiu (a1), Chen-Tai Tan (a1), Tsuan-Shih Lee (a1) and Jain-Cheng Lee (a1)


We propose a nonscanning three-dimensional (3D) optical microscope based on reflectivity-height transformation in applications of biological and transparent plate measurements. The reflectivity of a prism can be transformed to the surface height of the specimen based on geometrical optics and the principle of internal reflection. Thus, the pattern of reflectivity is representative of the surface profile. Using charge-coupled device cameras to obtain the two-dimensional image patterns and combining with its reflectivity pattern, the 3D profile can be generated. The lateral resolution is determined by the diffraction limit, and the vertical resolution is better than several nanometers according to the incident angle and polarization used.


Corresponding author

* Corresponding author. E-mail:


Hide All
Axelrod, D. (1989). Total internal reflection fluorescence microscopy. In Methods in Cell Biology, Taylor, D. & Wang, W. (Eds.), vol. 30, chap. 9, pp. 245270. San Diego, CA: Academic Press.
Axelrod, D. (2001). Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764774.
Chiu, M.H., Lai, C.F., Ten, C.T. & Lin, Y.Z. (2011). Lateral and axial resolutions of an angle deviation microscope for different numerical apertures: Experimental results. Opt Eng 50(3), 033204-1–7.
Chiu, M.H., Shih, B.Y. & Lai, C.W. (2007). Laser-scanning angle deviation microscopy. Appl Phys Lett 90, 021111-1–3.
Dubois, A., Moreau, J. & Boccara, C. (2008). Spectroscopic ultrahigh-resolution full-field optical coherence microscopy. Opt Exp 16(21), 1708217091.
Dubois, A., Vabre, L., Boccara, A.C. & Beaurepaire, E. (2002). High-resolution full-field optical coherence tomography with a Linnik microscope. Appl Opt 41, 805812.
Goldberg, D.J. & Burmeister, D.W. (1986). Stages in axon formation: Observation of growth of aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J Cell Biol 103, 19211931.
Hecht, E. (1988). Geometrical optics. In Optics, 3rd ed., chap. 5, pp. 189191. Boston, MA: Addison Wesley Longman, Inc.
Huang, P.S., Kiyono, S. & Kamada, O. (1992). Angle measurement based on the internal-reflection effect: A new method. Appl Opt 31, 60476055.
Iizuka, K. (2002). In free space and special media. In Elements of Photonics, Saleh, B.E.A. (Series Ed.), vol. I, pp. 201227. New York: John Wiley & Sons.
Kohno, T., Ozawa, N., Miyamoto, K. & Musha, T. (1988). High precision optical surface sensor. Appl Opt 27, 103108.
Masters, B.R. (2005). Confocal Microscopy and Multiphoton Excitation Microscopy. Bellingham, WA: SPIE Press.
Matsumoto, T., Kitagawa, Y., Adachi, M. & Minemoto, T. (1991). Profile measuring method based on reflection characteristics at a critical angle in a right-angle prism. Appl Opt 30, 32053209.
Murphy, D. (2001). Differential Interference Contrast (DIC) Microscopy and Modulation Contrast Microscopy, Fundamentals of Light Microscopy and Digital Imaging, pp. 153168. New York: Wiley-Liss.
Roy, D. & Knigh, A.E. (2010). Scanning near-field optical microscopy and related techniques. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed., Lindon, J., Tranter, G. & Koppenaal, D. (Eds.), pp. 24572463. San Diego, CA: Elsevier Ltd. Academic Press.
Tan, C.T., Chan, Y.S., Chen, J.A., Liao, T.C. & Chiu, M.H. (2011a). Non-scanning, non-interferometric, three-dimensional optical profilometer with nanometer resolution. Chin Opt Lett 9(10), 101202-1–3.
Tan, C.T., Chan, Y.S., Lin, Z.C. & Chiu, M.H. (2011b). Angle-deviation optical profilometer. Chin Opt Lett 9(1), 011201-1–3.
Yazdanfar, S., Laiho, L.H. & So, P.T.C. (2004). Interferometric second harmonic generation microscopy. Opt Exp 12, 27392745.
Yoshiki, K., Ryosuke, K., Hashimoto, M., Hashimoto, N. & Araki, T. (2007). Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation. Opt Lett 32, 16801682.


Nonscanning Three-Dimensional Optical Microscope Based on the Reflectivity-Height Transformation for Biological Measurements

  • Ming-Hung Chiu (a1), Chen-Tai Tan (a1), Tsuan-Shih Lee (a1) and Jain-Cheng Lee (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed