Skip to main content Accessibility help
×
Home

A New Method for Measurement of the Vitrification Rate of Earthenware Texture by Scanning Electron Microscope

  • Eun Jung Moon (a1), Su Kyeong Kim (a1), Min Su Han (a1), Eun Woo Lee (a1), Jun Su Heo (a1) and Han Hyoung Lee (a1)...

Abstract

A new method for determining the vitrification rate of pottery depending on the firing temperature was devised using secondary electron images (SEI) of scanning electron microscope (SEM). Several tests were performed to establish the appropriate operating conditions of SEM and reproducibility as well as to examine the applicability of the method. The grayscale values converted from each pixel of SEI were used to determine the vitrification rate of pottery, which in our study were artificially fired specimens composed of three types of clay. A comparison between the vitrification rate value and appearance temperature of minerals shows that mullite formation starts at 1,100°C, during which the vitrification rate rapidly increases by over 10%. In consequence, the result presented here demonstrates that the new method can be applied to estimate the firing temperature of pottery.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A New Method for Measurement of the Vitrification Rate of Earthenware Texture by Scanning Electron Microscope
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A New Method for Measurement of the Vitrification Rate of Earthenware Texture by Scanning Electron Microscope
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A New Method for Measurement of the Vitrification Rate of Earthenware Texture by Scanning Electron Microscope
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. E-mail: lhh1025@hanmail.net

References

Hide All
Andaloro, E., Belfiore, C.M., De Francesco, A.M., Jacobsen, J.K. & Mittica, G.P. (2010). A preliminary archaeometric study of pottery remains from the archaeological site of Timpone della Motta, in the Sibaritide area (Calabria-Southern Italy). Appl Clay Sci 53(3), 445453.
Dana, K. & Das, S.K. (2004). Evolution of microstructure in fly ash containing porcelain body on heating at different temperatures. Bull Mater Sci 27, 183188.
Hein, A., Müller, N.S., Day, P.M. & Kilikoglou, V. (2008). Thermal conductivity of archaeological ceramics: The effect of inclusions, porosity and firing temperature. Thermochim Acta 480, 3542.
Iqbal, Y. & Lee, W.E. (1999). Fired porcelain microstructures revisited. J Am Ceram Soc 82, 35843590.
Kilikoglou, V. (1994). Scanning electron microscopy. In Ceramic Regionalism in Prepalatial Central Crete: The Mesara Imports at EMI to EMIIA, Knossos, D.E. & Day, P.M. (Eds.), Annual of the British School at Athens, 89, 187.
Kingery, W.D., Bowen, H.K. & Uhlman, D.R. (1991). Introduction to Ceramics, 2nd ed. Singapore: John Wiley & Sons.
Maniatis, Y., Simopoulos, A., Kostikas, A. & Perdikatsis, V. (1983). Effect of a reducing atmosphere on minerals and iron oxides developed in fired clays: The role of Ca. J Am Ceram Soc 66, 773781.
Maniatis, Y. & Tite, M.S. (1975). Scanning electron microscope examination of the bloating of fired clays. Trans J Br Ceram Soc 74, 229232.
Maniatis, Y. & Tite, M.S. (1978). Ceramic technology in the Aegean world during the Bronze Age. In Thera and the Aegean World, vol. 1, Doumas, C. (Ed.), pp. 483492. London: The Thera Foundation.
Maniatis, Y. & Tite, M.S. (1981). Technological examination of Neolithic–Bronze Age pottery from central and southeast Europe and from the Near East. J Archaeol Sci 8, 5976.
Moon, E.J., Kang, H.J., Han, M.S. & Lee, H.H. (2011). A study on the categorization method of earthenware from Pung-Nap Mud Castle based on scientific data. The Baekje Hakbo 5, 5790.
Moropoulou, A., Bakolas, A. & Bisbikou, K. (1995). Thermal analysis as a method of characterizing ancient ceramic technologies. Thermochim Acta 269270, 743753.
Noll, W., Holm, R. & Born, L. (1975). Painting of ancient ceramics. Angew Chem Int Ed Engl 14, 602619.
Sandrolini, F., Moriconi, G., Veniali, F. & Zappia, C. (1993). Principles and applications of pore structure characterization. International Symposium RILEM/CNR, Haynes, J.M. & Doria, P.R. (Eds.), Milan, Italy, pp. 291297.
Van Olphen, H. & Fripat, J.J. (1979). Data Handbook for Clay Materials and Other Non-Metallic Minerals, 1st ed. London: Pergamon Press.
Velraj, G., Janaki, K., Musthafa, A.M. & Palanivel, R. (2009). Estimation of firing temperature of some archaeological pottery shreds excavated recently in Tamil Nadu, India. Spectrochim Acta A Mol Biomol Spectrosc 72, 730733.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed