Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-06T03:57:30.668Z Has data issue: false hasContentIssue false

The molecular basis for sarcomere organization in vertebrate skeletal muscle

Published online by Cambridge University Press:  30 July 2021

Zhexin Wang
Affiliation:
Max Planck Institute of Molecular Physiology, Dortmund, Germany
Michael Grange
Affiliation:
Max Planck Institute of Molecular Physiology, Dortmund, Germany
Thorsten Wagner
Affiliation:
Max Planck Institute of Molecular Physiology, United States
Ay Lin Kho
Affiliation:
King's College London, United States
Mathias Gautel
Affiliation:
King's College London, United States
Stefan Raunser
Affiliation:
Max Planck Institute of Molecular Physiology, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Cryo-electron Tomography: Present Capabilities and Future Potential
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

von Der Ecken, J., Heissler, S. M., Pathan-Chhatbar, S., Manstein, D. J. & Raunser, S. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 534, 724728 (2016).Google ScholarPubMed
Mentes, A. et al. High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proc. Natl. Acad. Sci. U. S. A. 115, 12921297 (2018).CrossRefGoogle ScholarPubMed
Ribeiro, E. D. A. et al. The structure and regulation of human muscle α-Actinin. Cell 159, 14471460 (2014).Google Scholar
Lombardi, V. et al. X-ray diffraction studies of the contractile mechanism in single muscle fibres. Philos. Trans. R. Soc. B Biol. Sci. 359, 18831893 (2004).Google ScholarPubMed
AL-Khayat, H. A., Hudson, L., Reedy, M. K., Irving, T. C. & Squire, J. M. Myosin head configuration in relaxed insect flight muscle: X-ray modeled resting cross-bridges in a pre-powerstroke state are poised for actin binding. Biophys. J. 85, 10631079 (2003).CrossRefGoogle Scholar
Squire, J. M., Roessle, M. & Knupp, C. New X-ray diffraction observations on vertebrate muscle: Organisation of C-protein (MyBP-C) and troponin and evidence for unknown structures in the vertebrate A-band. J. Mol. Biol. 343, 13451363 (2004).CrossRefGoogle ScholarPubMed
Taylor, K. A., Reedy, M. C., Cordova, L. & Reedy, M. K. Three-dimensional reconstruction of rigor insect flight muscle from tilted thin sections. Nature 310, 285291 (1984).CrossRefGoogle ScholarPubMed
Schmitz, H. et al. Electron tomography of insect flight muscle in rigor and AMPPNP at 23°C. J. Mol. Biol. 264, 279301 (1996).CrossRefGoogle ScholarPubMed
Schmitz, H., Reedy, M. C., Reedy, M. K., Tregear, R. T. & Taylor, K. a. Tomographic three-dimensional reconstruction of insect flight muscle partially relaxed by AMPPNP and ethylene glycol. J. Cell Biol. 139, 695707 (1997).CrossRefGoogle ScholarPubMed
Liu, J. et al. Electron tomography of fast frozen, stretched rigor fibers reveals elastic distortions in the myosin crossbridges. J. Struct. Biol. 147, 268282 (2004).CrossRefGoogle ScholarPubMed