Skip to main content Accessibility help
×
Home

Micro-Topography and Reactivity of Implant Surfaces: An In Vitro Study in Simulated Body Fluid (SBF)

  • M.G. Gandolfi (a1), P. Taddei (a1), F. Siboni (a1), V. Perrotti (a2), G. Iezzi (a2), A. Piattelli (a2) and C. Prati (a1)...

Abstract

The creation of micro-textured dental implant surfaces possessing a stimulating activity represents a challenge in implant dentistry; particularly, the formation of a thin, biologically active, calcium-phosphate layer on their surface could help to strengthen the bond to the surrounding bone. The aim of the present study was to characterize in terms of macrostructure, micro-topography and reactivity in simulated body fluid (SBF), the surface of titanium (Ti) implants blasted with TiO2 particles, acid etched with hydrofluoric acid, and activated with Ca and Mg-containing nanoparticles. Sandblasted and acid-etched implants were analyzed by ESEM-EDX (environmental scanning electron microscope with energy dispersive X-ray system) to study the micromorphology of the surface and to perform elemental X-ray microanalysis (microchemical analyses) and element mapping. ESEM-EDX analyses were performed at time 0 and after a 28-day soaking period in SBF Hank’s balanced salt solution (HBSS) following ISO 23317 (implants for surgery—in vitro evaluation for apatite-forming ability of implant materials). Microchemical analyses (weight % and atomic %) and element mapping were carried out to evaluate the relative element content, element distribution, and calcium/phosphorus (Ca/P) atomic ratio. Raman spectroscopy was used to assess the possible presence of impurities due to manufacturing and to investigate the phases formed upon HBSS soaking. Micro-morphological analyses showed a micro-textured, highly rough surface with microgrooves. Microchemical analyses showed compositional differences among the apical, middle, and distal thirds. The micro-Raman analyses of the as-received implant showed the presence of amorphous Ti oxide and traces of anatase, calcite, and a carbonaceous material derived from the decomposition of an organic component of lipidic nature (presumably used as lubricant). A uniform layer of Ca-poor calcium phosphates (CaPs) (Ca/P ratio <1.47) was observed after soaking in HBSS; the detection of the 961 cm−1 Raman band confirms this finding. These implants showed a micro-textured surface supporting the formation of CaPs when immersed in SBF. These properties may likely favor bone anchorage and healing by stimulation of mineralizing cells.

Copyright

Corresponding author

* Corresponding author. mgiovanna.gandolfi@unibo.it

References

Hide All
Aggour, M., Dittrich, T., Belaidi, A., Sieber, I. & Rappich, J. (2005). Anodic preparation of porous TiO2 in fluoride solution. Phys Stat Sol (c) 2, 33443348.
Alghamdi, H.S., Cuijpers, V.M., Wolke, J.G., van den beucken, J.J. & Jansen, J.A. (2013). Calcium-phosphate-coated oral implants promote osseointegration in osteoporosis. J Dent Res 92, 982988.
Aniket, , Young, A., Marriott, I. & El-ghannam, A. (2012). Promotion of pro-osteogenic responses by a bioactive ceramic coating. J Biomed Mater Res A 100, 33143325.
Aparicio, C., Manero, J.M., Conde, F., Pegueroles, M., Planell, J.A., Vallet-regí, M. & Gil, F.J. (2007). Acceleration of apatite nucleation on microrough bioactive Ti for bone-replacing implants. J Biomed Mater Res A 82, 521529.
Ballo, A.M., Omar, O., Xia, W. & Palmquist, A. (2011). Dental implant surfaces – physicochemical properties, biological performance, and trends, chapter 2. pp. 19–57 In Implant Dentistry – A Rapid Evolving Practice, Ilser T., ISBN 978-953-307-658-4, Tech publisher, Rijeka, Croatia. pp. 1957.
Baranska, M., Schulz, H., Strehle, M. & Popp, J. (2011). Applications of vibrational spectroscopy to oilseeds analysis. In Applications of Vibrational Spectroscopy in Food Science, vol. 1, Li-Chan, E., Chalmers, J. & Griffiths, P. (Eds.), p. 414. John Wiley & Sons, Inc., Hoboken, NJ
Biggs, M.J., Richards, R.G. & Dalby, M.J. (2010). Nanotopographical modification: A regulator of cellular function through focal adhesions. Nanomedicine 6, 619633.
Biggs, M.J., Richards, R.G., Gadegaard, N., Mcmurray, R.J., Affrossman, S., Wilkinson, C.D., Oreffo, R.O. & Dalby, M.J. (2009). Interactions with nanoscale topography: Adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res A 91, 195208.
Bigi, A., Boanini, E., Bracci, B., Facchini, A., Segatti, S.P.F. & Sturba, L. (2005). Nanocrystalline hydroxyapatite coatings on Ti: A new fast biomimetic method. Biomaterials 26, 40854089.
BS ISO 23317 (2012). Implants for surgery – In vitro evaluation for apatite-forming ability of implant materials. International Standard ISO/FDIS 23317:2012.
Busalev, Y.A., Bochkareva, V.A. & Nikolaev, N.S. (1962). The reaction of Ti dioxide with hydrofluoric acid. Russian Chem Bull 11, 361364.
Cao, W. & Hench, L.L. (1996). Bioactive materials. Ceramics Int 22, 493507.
Cooper, L.F. (2000). A role for surface topography in creating and maintaining bone at Ti endosseous implants. J Prosth Dent 84, 522534.
De veij, M., Vandenabeele, P., De beer, T., Remonc, J.P. & Moens, L. (2009). Reference database of Raman spectra of pharmaceutical excipients. J Raman Spectrosc 40, 297307.
Degasne, I., Baslé, M.F., Demais, V., Huré, G., Lesourd, M., Grolleau, B., Mercier, L. & Chappard, D. (1999). Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on Ti surfaces. Calcif Tissue Int 64, 499507.
Eanes, E.D., Gillessen, I.H. & Posner, A.S. (1965). Intermediate states in the precipitation of hydroxyapatite. Nature 208, 365367.
Gandolfi, M.G., Taddei, P., Siboni, F., Modena, E., Ciapetti, G. & Prati, C. (2011 a). Development of the foremost light-curable calcium-silicate mta cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behaviour. Dent Mater 27, e134e157.
Gandolfi, M.G., Taddei, P., Tinti, A., Dorigo, De., Stefano, E. & Prati, C. (2011 b). Alpha-TCP improves the apatite-formation ability of calcium-silicate hydraulic cement soaked in phosphate solutions. Mater Sci Eng C 31, 14121422.
Gandolfi, M.G., Taddei, P., Modena, E., Siboni, F. & Prati, C. (2013). Biointeractivity-related versus chemi/physisorption-related apatite precursor-forming ability of current root end filling materials. J Biomed Mater Res B 101, 11071123.
Gandolfi, M.G., Taddei, P., Tinti, A., Dorigo, De., Stefano, E., Rossi, P.L. & Prati, C. (2010). Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions. Clin Oral Invest 14, 659668.
Gehrke, S.A. & do nascimento, P.C. (2013). Analysis of bone tissue healing around ti implant surface treated with tio sandblasted after three and six weeks used different histological methods – a study in rabbits. Sci J Med Clin Trials 150, 3440.
Gil, F.J., Manzanares, N., Badet, A., Aparicio, C. & Ginebra, M.P. (2014). Biomimetic treatment on dental implants for short-term bone regeneration. Clin Oral Invest 18, 5966.
Guo, J., Padilla, R.J., Ambrose, W., De kok, I.J. & Cooper, L.F. (2007). The effect of hydrofluoric acid treatment of TiO2 grit blasted Ti implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials 28, 54185425.
Hanawa, T., Kon, M., Ukai, H., Murakami, K., Miyamoto, Y. & Asaoka, K. (1997). Surface modification of Ti in calcium-ion-containing solutions. J Biomed Mater Res A 34, 273278.
Hench, L.L. & Wilson, J. (1984). Surface-active biomaterials. Science 226, 630636.
Hori, N., Iwasa, F., Ueno, T., Takeuchi, K., Tsukimura, N., Yamada, M., Hattori, M., Yamamoto, A. & Ogawa, T. (2010). Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Dent Mater 26, 275287.
Hubbs, F., Minhas, N.S., Jones, W., Greskevitch, M., Battelli, L.A., Porter, D.W., Goldsmith, W.T., Frazer, D., Landsittel, D.P., Ma, J.Y.C., Barger, M., Hill, K., Schwegler-berry, D., Robinson, V.A. & Castranova, V. (2001). Comparative pulmonary toxicity of 6 abrasive blasting agents. Toxicol Sci 61, 135143.
Iezzi, G., Vantaggiato, G., Shibli, J.A., Fiera, E., Falco, A., Piattelli, A. & Perrotti, V. (2012). Machined and sandblasted human dental implants retrieved after 5 years: A histologic and histomorphometric analysis of three cases. Quintess Int 43, 287292.
Kang, B.S., Sul, Y.T., Oh, S.J., Lee, H.J. & Albrektsson, T. (2009). XPS, AES and SEM analysis of recent dental implants. Acta Biomaterialia 5, 22222229.
Khang, D., Lu, J., Yao, C., Haberstroh, K.M. & Webster, T.J. (2008). The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on Ti. Biomaterials 29, 970983.
Kilpadi, D.V., Raikar, G.N., Liu, J., Lemons, J.E., Vohra, Y. & Gregory, J.C. (1998). Effect of surface treatment on unalloyed Ti implants: Spectroscopic analyses. J Biomed Mater Res A 40, 646659.
Kubo, K., Tsukimura, N., Iwasa, F., Ueno, T., Saruwatari, L., Aita, H., Chiou, W.A. & Ogawa, T. (2009). Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 30, 53195329.
Lamolle, S.F., Monjo, M., Lyngstadaas, S.P., Ellingsen, J.E. & Haugen, H.J. (2009 a). Ti implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and in vivo performance. J Biomed Mater Res A 88, 581588.
Lamolle, S.F., Monjo, M., Rubert, M., Haugen, H.J., Lyngstadaas, S.P. & Ellingsen, J.E. (2009 b). The effect of hydrofluoric acid treatment of Ti surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials 30, 736742.
Le guèhennec, L., Soueidan, A., Layrolle, P. & Amouriq, Y. (2007). Surface treatments of Ti dental implants for rapid osseointegration. Dent Mater 23, 844854.
Liu, X., Chu, P.K. & Ding, C. (2004). Surface modification of Ti, Ti alloys, and related materials for biomedical applications. Mater Sci Eng R 47, 49121.
Lu, X. & Leng, Y. (2005). Theoretical analysis of Ca/P precipitation in simulated body fluid. Biomaterials 26, 10971108.
Martinez-ramirez, S., Sanchez-cortes, S., Garcia ramos, J.V., Domingo, C., Fortes, C. & Blanco-varela, M.T. (2003). Micro-Raman spectroscopy applied to depth profiles of carbonates formed in lime mortar. Cem Concr Res 33, 20632068.
Masaki, C., Schneider, G.B., Zaharias, R., Seabold, D. & Stanford, C. (2005). Effects of implant surface microtopography on osteoblast gene expression. Clin Oral Impl Res 16, 650656.
Massaro, C., Rotolo, P., De riccardis, F., Milella, E., Napoli, A., Wieland, M., Textor, M., Spencer, N.D. & Brunette, D.M. (2002). Comparative investigation of the surface properties of commercial Ti dental implants. Part I: Chemical composition. J Mater Sci: Mater Med 13, 535548.
Muzzarelli, R.A.A., Biagini, G., Mattioli belmonte, M., Talassi, O., Gandolfi, M.G., Solmi, R., Carraro, S., Giardino, R., Fini, M. & Nicoli aldini, N. (1997). Osteoinduction by chitosan-complexed BMP: Morpho-structural responses in an osteoporotic model. J Bioact Compat Polym 12, 321329.
Narayanan, R., Seshadri, S.K., Kwon, T.Y. & Kim, K.H. (2008). Ca/P-based coatings on Ti and its alloys. J Biomed Mater Res B 85, 279299.
Nelson, D.G.A. & Featherstone, J.D.B. (1982). Preparation, analysis and characterization of carbonated apatites. Calcif Tissue Int 34, S69S75.
Ohsaka, T., Izumi, F. & Fujiki, Y. (1978). Raman spectrum of anatase, TiO2 . J Raman Spectrosc 7, 321324.
Piattelli, A., Artese, L., Penitente, E., Iaculli, F., Degidi, M., Mangano, C., Shibli, A.J., Coelho, P.G., Perrotti, V. & Iezzi, G. (2014). Osteocyte density in the peri-implant bone of implants retrieved after different time periods (4 weeks to 27 years). J Biomed Mater Res B 102, 239243.
Racine, B., Ferrari, A.C., Morrison, N.A., Hutchings, I., Milne, W.I. & Robertson, J. (2001). Properties of amorphous carbon–silicon alloys deposited by a high plasma density source. J Appl Phys 90, 50025012.
Raynaud, S., Champion, E., Bernache-assollant, D. & Thomas, P. (2002). Ca/P apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23, 10651072.
Straumanis, M.E. & Chen, P.C. (1951). The mechanism and rate of dissolution of Ti in hydrofluoric acid. J Electrochem Soc 98, 234240.
Svetina, M., Colombi, L., Sbaizero, O. & Meriani, S.A.D. (2001). Deposition of calcium ions on rutile (110): A first-principles investigation. Acta Materialia 49, 21692177.
Taddei, P., Tinti, A., Bottura, G. & Bertoluzza, A. (2000). Vibrational spectroscopic characterization of new Ca/P bioactive coatings. Biopolymers 57, 140148.
Takadama, H., Kim, H.M., Kokubo, T. & Nakamura, T. (2001 a). An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive Ti metal. J Biomed Mater Res A 55, 185193.
Takadama, H., Kim, H.M., Kokubo, T. & Nakamura, T. (2001 b). TEM-EDX study of mechanism of bonelike apatite formation on bioactive Ti metal in simulated body fluid. J Biomed Mater Res A 57, 441448.
Tanahashi, M. & Matsuda, T. (1997). Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res A 34, 305315.
Textor, M., Sittig, C., Frauchiger, V., Tosatti, S. & Brunette, D.M. (2011). Properties and biological significance of natural oxide films on Ti and its alloys. In Ti in Medicine, Brunette, D. M., Tengvall, P., Textor, M. & Thomsen, P. (Eds.), pp. 171230. Berlin, Germany: Springer.
Tsukimura, N., Yamada, M., Iwasa, F., Minamikawa, H., Att, W., Ueno, T., Saruwatari, L., Aita, H., Chiou, W.A. & Ogawa, T. (2011). Synergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of Ti. Biomaterials 32, 43584368.
Tuinstra, F. & Koenig, J.L. (1970). Raman spectrum of graphite. J Chem Phys 53, 11261130.
Vandenabeele, P., Wehling, B., Moens, L., Edwards, H., De reu, M. & Van hooydonk, G. (2000). Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal Chim Acta 407, 261274.
Variola, F., Yi, J.H., Richert, L., Wuest, J.D., Rosei, F. & Nanci, A. (2008). Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 29, 12851298.
Wang, L. & Nancollas, G.H. (2008). Calcium orthophosphates: Crystallization and dissolution. Chem Reviews 108, 46284669.
Wen, H.B., de wijn, J.R., Liu, Q., De groot, K. & Cui, F.Z. (1997). A simple method to prepare Ca/P coatings on Ti6Al4V. J Mater Sci: Mat Med 8, 765770.
Wopenka, B. & Pasteris, J.D. (2005). A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25, 131143.
Yamada, M., Ueno, T., Tsukimura, N., Ikeda, T., Nakagawa, K., Hori, N., Suzuki, T. & Ogawa, T. (2012). Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on Ti implants. Int J Nanomed 7, 859873.
Yang, B.C., Weng, J., Li, X.D. & Zhang, X.D. (1999). The order of calcium and phosphate ion deposition on chemically treated Ti surfaces soaked in aqueous solution. J Biomed Mater Res A 47, 213219.

Keywords

Micro-Topography and Reactivity of Implant Surfaces: An In Vitro Study in Simulated Body Fluid (SBF)

  • M.G. Gandolfi (a1), P. Taddei (a1), F. Siboni (a1), V. Perrotti (a2), G. Iezzi (a2), A. Piattelli (a2) and C. Prati (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed