Skip to main content Accessibility help

Microstructural Characterization by Automated Crystal Orientation and Phase Mapping by Precession Electron Diffraction in TEM: Application to Hot Deformation of a γ-TiAl-based Alloy

  • Vajinder Singh (a1) (a2), Chandan Mondal (a1), P. P. Bhattacharjee (a2) and P. Ghosal (a1)


Microstructural evolution of a hot deformed γ-TiAl-based Ti–45Al–8Nb–2Cr–0.2B (at.%) alloy has been studied using an advanced characterization technique called automated crystal orientation and phase mapping by precession electron diffraction carried out in a transmission electron microscope (with a NanoMEGAS attachment). It has been observed that the technique, having a capability to recognize diffraction patterns with improved accuracy and reliability, is particularly suitable for characterization of complex microstructural features evolved during hot deformation of multiphase (α2 + γ + β)-based TiAl alloys. Examples of coupled orientations and phase maps of the present alloy demonstrate that the accurate reproduction of the very fine lamellar structure (α2 + γ + γ) is feasible due to its inherent high-spatial resolution and absence of a pseudo-symmetry effect. It enables identification of salient features of γ-TiAl deformation behavior in terms of misorientation analyses (GAM, GOS, and KAM) and transformation characteristics of very fine lamellar constituent phases. Apart from conventional strain analyses from the orientation database, an attempt has been made to image the dislocation sub-structure of γ-phases, which supplements the deformation structure evaluation using this new technique.


Corresponding author

*Author for correspondence: Chandan Mondal, E-mail:;


Hide All
Appel, F (2012). Phase transformations and recrystallization processes during synthesis, processing and service of TiAl alloys. In Recrystallization, Sztwiertnia, K (Ed.), Croatia: Intech Open Science, pp. 225266.
Appel, F, Paul, JDH & Oehring, M (2011). Gamma Titanium Aluminide Alloys: Science and Technology, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.
Blackburn, MJ (1970). Some aspects of phase transformations in Titanium alloys. In The Science, Technology and Applications of Titanium, vol. 633, Jaffee, RI & Promisel, NE (Eds.), Oxford, UK: Pergamon Press, pp. 633643.
Clemens, H & Smarsly, W (2011). Light-weight intermetallic titanium aluminides—status of research and development. Adv Mater Res 278, 551556.
Kim, YW (1989). Intermetallic alloys based on gamma TiAl. JOM 41, 2430.
Kishida, K, Inui, H & Yamaguchi, M (1998). Deformation of lamellar structure in TiAl-Ti3Al two-phase alloys. Philos Mag A 78, 128.
Kothari, K, Radhakrishnan, R & Wereley, NM (2012). Advances in gamma titanium aluminides and their manufacturing techniques. Adv Aerosp Sci 55, 116.
Liu, B, Liu, Y, Li, YP, Zhang, W & Chiba, A (2011). Thermomechanical characterization of β-stabilized Ti-45Al-7Nb-0.4W-0.15B alloy. Intermetallics 19, 11841190.
Moeck, P, Rouvimov, S, Rauch, EF & Nicolopoulos, S (2009). Structural fingerprinting of nanocrystals: Advantages of precession electron diffraction, automated crystallite orientation and phase maps. In Electron Crystallography for Materials Research and Quantitative Characterization of Nanostructured Materials, Moeck, P, Hovmöller, S, Nicolopoulos, S, Rouvimov, S, Petkov, V, Gateshki, M & Fraundorf, P (Eds.), Mater. Res. Soc. Symp. Proc. vol. 1184, 4960. New York, USA: Materials Research Society.
Niu, HZ, Chen, YY, Xiao, SL, Kong, FT & Zhang, CJ (2011). High temperature deformation behaviors of Ti-45Al-2Nb-1.5 V-1Mo-Y alloy. Intermetallics 19, 17671774.
Rauch, E, Véron, M, Portillo, J, Bultreys, D, Maniette, Y & Nicolopoulos, S (2008). Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc Anal 93, S5S8.
Rauch, EF, Portillo, J, Nicolopoulos, S, Bultreys, D, Rouvimov, S & Moeck, P (2010). Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z Kristallogr 225, 103109.
Rouvimov, S, Rauch, EF, Moeck, P & Nicolopoulos, S (2009). Automated crystal orientation and phase mapping of iron oxide nanocrystals in a transmission electron microscope. Proc. 2009 NSTI Nanotechnology Conference and Trade Show, Vol. I, Houston, Texas, pp. 421424.
Salishchev, GA, Senkov, ON, Imayev, RM, Imayev, VM, Shagiev, MR, Kuznetsov, AV, Appel, F, Oehring, M, Kaibyshev, OA & Froes, FH (1999). Processing and deformation behavior of gamma TiAl alloys with fine grained equiaxed microstructure. Adv Perf Mater 6, 107116.
Singh, SR & Howe, JM (1992). Studies on the deformation behavior of interfaces in (γ + α2) titanium aluminide by high-resolution transmission electron microscopy. Philos Mag Lett 65, 739.
Singh, V, Mondal, C, Kumar, A, Bhattacharjee, PP & Ghosal, P (2019). High temperature compressive flow behavior and associated microstructural development in a β-stabilized high Nb-containing g-TiAl based alloy. J Alloys Compd 788, 573585.
Toshimitsu, T, Kentaro, S, Satoshi, K, Satoru, K & Masao, T (2005). Fabrication of TiAl components by means of hot forging and machining. Intermetallics 13, 971978.
Vincent, R & Midgley, P (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271282.
Yamaguchi, M, Inui, H & Ito, K (2000). High-temperature structural intermetallics. Acta Mater 47, 307322.
Zghal, S, Thomas, M, Naka, S, Finel, A & Couret, A (2005). Phase transformations in TiAl based alloys. Acta Mater 53, 26532664.
Zhang, WJ & Appel, F (2002). Effect of Al content and Nb addition on the strength and fault energy of TiAl alloys. Mater Sci Eng A 329–331, 649652.
Zhao, L & Tangri, K (1991). TEM investigation on the interfacial boundaries in as-cast Ti3Al + TiAl alloy. Acta Metall Mater 39, 22092224.


Microstructural Characterization by Automated Crystal Orientation and Phase Mapping by Precession Electron Diffraction in TEM: Application to Hot Deformation of a γ-TiAl-based Alloy

  • Vajinder Singh (a1) (a2), Chandan Mondal (a1), P. P. Bhattacharjee (a2) and P. Ghosal (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed