Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T18:40:28.567Z Has data issue: false hasContentIssue false

Microscopy and Microanalysis of Blood in a Snake Head Fish, Channa gachua Exposed to Environmental Pollution

Published online by Cambridge University Press:  25 February 2016

Eva M. Pala
Affiliation:
Department of Zoology, Shillong College, Shillong-793003, Meghalaya, India
Sudip Dey*
Affiliation:
Electron Microscope Division, Sophisticated Analytical Instrument Facility, North Eastern Hill University, Shillong-793022, Meghalaya, India
*
*Corresponding author. sudipdey.dey1@gmail.com
Get access

Abstract

Conventional and highly sophisticated analytical methods (Cyria et al., 1989; Massar et al., 2012a) were used to analyze micro-structural and micro-analytical aspects of the blood of snake head fish, Channa gachua, exposed to municipal wastes and city garbage. Red (RBC) and white blood cell (WBC) counts and hemhemoglobin content were found to be higher in pollution affected fish as compared with control. Scanning electron microscopy revealed the occurrence of abnormal erythrocytes such as crenated cells, echinocytes, lobopodial projections, membrane internalization, spherocytes, ruptured cells, contracted cells, depression, and uneven elongation of erythrocyte membranes in fish inhabiting the polluted sites. Energy-dispersive X-ray spectroscopy (EDS) revealed the presence of silicon and lead in the RBCs of pollution affected fish. Significance of the study includes the highly sophisticated analytical approach, which revealed the aforementioned micro-structural abnormalities.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akinrotimi, O.A., Gabriel, U.U. & Ariweriokuma, S.V. (2012). Hematotoxicity of cypermethrin to African catfish Clarias gariepinus under laboratory conditions. J Environ Eng Technol 1, 2025.Google Scholar
Alwan, S.F., Hadi, A.A. & Shokr, A.E. (2009). Alterations in hematological parameters of fresh water fish, Tilapia zillii, exposed to aluminium. J Sci Appl 3, 1219.Google Scholar
Amadi, A.N., Yisa, J., Ogbonnaya, I.C., Dan-Hassan, M.A., Jacob, J.O. & Alkali, Y.B. (2012). Quality evaluation of River Chanchaga using metal pollution index and principal component analysis. J Geogr Geol 4, 1321.Google Scholar
Ayoola, S.O. & Akaeze, C.O. (2012). Genotoxic evaluation and toxicity of spent engine oil on Clarias gariepinus. Res J Environ Toxicol 6, 133141.Google Scholar
Ben-Bassat, I., Bensch, K.G. & Schrier, S.L. (1972). Drug-induced erythrocyte membrane internalization. J Clin Invest 51, 18331844.CrossRefGoogle ScholarPubMed
Bennet-Chambers, M., Davies, P. & Knott, B. (1999). Cadmium in aquatic ecosystems in Western Australia: A legacy of nutrient deficient soils. J Environ Manag 57, 283295.CrossRefGoogle Scholar
Chandanshive, S.S., Sarwade, P.P., Humbe, A. & Mohekar, A.D. (2012). Effect of heavy metal model mixture on hematological parameters of Labeo rohita from Gharni Dam Nalegaon, Latur. Int Multidiscip Res J 2, 1012.Google Scholar
Chvapil, M., Stankova, L. & Malshet, V. (1976). Lipid peroxidation as one of the mechanisms of silica fibrogenicity? 1. Study with erythrocytes. Environ Res 11, 7888.CrossRefGoogle ScholarPubMed
Cyria, P., Antony, H. & Nonbisor, P. (1989). HemHemoglobin and hematocrit values in the fish Oreochromis mossambicus, after short term exposure to copper and lead. Bull Environ Contam Toxicol 43, 315320.CrossRefGoogle Scholar
Davis, N.M., Weaver, V., Parks, K. & Lydy, M.J. (2003). An assessment of water quality, physical habitat and biological integrity of an urban stream in Wichita, Kansas, prior to restoration improvements (phase I). Arch Environ Contam Toxicol 44, 351359.CrossRefGoogle ScholarPubMed
Dey, S., Arjun, J. & Das, M. (1999). Erythrocyte membrane dynamics in albino mice offspring born to females with lead-induced toxicity during pregnancy: A scanning electron microscopic study. Biomed Lett 59, 1566.Google Scholar
Gideon, A.C. & Adekunle, B.A. (2012). Municipal landfill leachates induced alterations in hematological indices and erythrocyte morphology of rats. Int J Chem Environ Eng Syst 3, 84100.Google Scholar
Gill, T.S. & Pant, J.C. (1986). Chromatin condensation in the erythrocytes of fish following exposure to cadmium. Bull Environ Contam Toxicol 36, 199203.CrossRefGoogle ScholarPubMed
Homady, M., Hussein, A., Jiries, A., Mahasneh, F., Al-Nasir, F. & Khleifat, F. (2002). Survey of some heavy metals in sediments from vehicular service stations in Jordan and their effects on social aggression in prepubertal male mice. Environ Res 8, 4349.CrossRefGoogle Scholar
Homechaudhuri, S. & Banerjee, S. (1991). Scanning electron microscopic observations on the blood cells of common carp (Cyprinus carpio) and catfish (Heteropneustes fossilis) under pesticide toxicity. Asian Fish Sci 4, 263267.Google Scholar
Hymavathi, V. & Rao, M. (2000). Effect of sublethal concentration of lead on the hematology and biochemical constituents of Channa punctatus. Bull Pure Appl Sci 19, 15.Google Scholar
Jadhav, S.N., Sarkar, S.N., Aggarwal, M. & Tripathi, H.C. (2007). Induction of oxidative stress in erythrocytes of male rats sub chronically exposed to a mixture of eight metals found as groundwater contaminants in different parts of India. Arch Environ Contam Toxicol 52, 145151.CrossRefGoogle Scholar
Katalay, S. & Parlak, H. (2004). The effects of pollution on hematological parameters of Black Goby (Gobius niger L., 1758) in Foça and Aliağa Bays. J Fish Aquat Sci 21, 113117.Google Scholar
Kayode, S.J. & Shamusideen, S.A. (2010). Hematological studies of Oreochromis niloticus exposed to diesel and drilling fluid in Lagos, Nigeria. Int J Biodivers Conserv 2, 130133.Google Scholar
Ladu, J.L.C., Lu, X. & Loboka, M.K. (2012). Experimental study on water pollution tendencies around Lobuliet, Khor bou and Luri streams in Juba, South Sudan. Int J Dev Sustain 1, 381390.Google Scholar
Larsson, A., Haux, C. & Sjöbeck, M.L. (1985). Fish physiology and metal pollution: Results and experiences from laboratory and field studies. Ecotoxicol Environ Saf 9, 250281.CrossRefGoogle ScholarPubMed
Luca, G.D., Gugliotta, T., Parisi, G., Romano, P., Geraci, A., Romano, P., Geraci, A., Romano, O., Scuteri, A. & Romano, L. (2007). Effects of nickel on human and fish red blood cells. Biosci Rep 27, 265273.CrossRefGoogle ScholarPubMed
Massar, B., Dey, S., Barua, R. & Dutta, K. (2012 a). Microscopy and microanalysis of hematological parameters in common carp, Cyprinus carpio L inhabiting a polluted lake in North East India. Microsc Microanal 18, 10771087.CrossRefGoogle Scholar
Massar, B., Dey, S. & Dutta, K. (2012 b). Electron microscopy of fish gill ultra structure with reference to water pollution by municipal wastes. J Adv Microsc Res 7, 151157.CrossRefGoogle Scholar
Massar, B., Dey, S. & Dutta, K. (2013). Ultra-structural abnormalities in liver of Cyprinus carpio L. caused by municipal wastes and other pollutants in the reservoir, Umiam (India). J Toxicol Health 103, 312319.Google Scholar
Massar, B., Dey, S. & Dutta, K. (2014 a). Structural changes in kidney of common carp (Cyprinus carpio L) inhabiting a polluted reservoir, Umiam in Meghalaya, India. J Adv Microsc Res (Special section) 9, 105109.CrossRefGoogle Scholar
Massar, B., Dey, S. & Dutta, K. (2014 b). Microscopical analysis on the ovaries of common carp, Cyprinus carpio L inhabiting a polluted reservoir, Umiam in Meghalaya, India. Microsc Microanal 20, 14041410.CrossRefGoogle Scholar
Moss, J.A. & Hathway, D.E. (1964). Transport of organic compounds in mammal partition of dieldrin and telodrin between the cellular components and proteins of blood. J Biochem 91, 384393.CrossRefGoogle ScholarPubMed
Nanda, P. (1997). Hematological changes in the common Indian catfish Heteropneustes fossilis under nickel stress. J Ecobiol 9, 243246.Google Scholar
Naskar, R., Sen, N.S. & Ahmad, M.F. (2006). Aluminium toxicity induced poikilocytosis in an air-breathing teleost, Clarias batrachus (Linn.). Ind J Exp Biol 44, 8385.Google Scholar
Nigam, A. & Ayyagari, A. (2008). Lab Manual in Biochemistry, Immunology and Biotechnology. New Delhi: Tata McGraw-Hill Publishing Company Limited.Google Scholar
Nte, M.E., Hart, A.E., Edun, O.M. & Akinrotimi, O.A. (2011). Effects of industrial effluents on hematological parameters of black jaw tilapia Sarothedon melanotheron (Rupell, 1852). Cont J Environ Sci 5, 2937.Google Scholar
Nwachukwu, M.A., Feng, H. & Achilike, K. (2010). Integrated study for automobile wastes management and environmentally friendly mechanic villages in the Imo River basin, Nigeria. Afr J Environ Sci Technol 4, 234249.Google Scholar
Parma, M.J., Loteste, A., Campana, M. & Bacchetta, C. (2007). Changes of hematological parameters in Prochilodus lineatus (Pisces, Prochilodontidae) exposed to sublethal concentration of cypermethrin. J Environ Biol 28, 147149.Google ScholarPubMed
Parveen, N. & Shadab, G.G.H.A. (2011). Evaluation of micronuclei and hematological profiles as genotoxic assays in Channa punctatus exposed to malathion. Int J Sci Nat 2, 625631.Google Scholar
Paul, M.J. & Meyer, J.L. (2001). Streams in the urban landscape. Ann Rev Ecol Syst 32, 333365.CrossRefGoogle Scholar
Pereira, B.F., Da Silva Alves, R.M., Pitol, D.L., Senhorini, J.A., De Cássia Gimenes De Alcântara Rocha, R. & Caetano, F.H. (2012). Effects of exposition to polluted environments on blood cells of the fish Prochilodus lineatus. Microsc Res Tech 75, 571575.CrossRefGoogle ScholarPubMed
Rajkumar, N., Subramani, T. & Elango, L. (2010). Groundwater contamination due to municipal solid waste disposal—A GIS based study in Erode City. Int J Environ Sci 1, 3955.Google Scholar
Raju, K.V., Somashekar, R.K. & Prakash, K.L. (2013). Spatio- temporal variation of heavy metals in Cauvery River basin. Proc Int Acad Ecol Environ Sci 3, 5975.Google Scholar
Şahan, A., Altun, T., Cevik, F., Cengizler, I., Nevsat, E. & Genc, E. (2007). Comparative study of some hematological parameters in European eel (Anguilla anguilla L., 1978) caught from different regions of Ceyhan River (Adana, Turkey). J Fish Aquat Sci 24, 167171.Google Scholar
Sawhney, A.K. & Johal, M.S. (2000). Erythrocyte alterations induced by malathion in Channa punctatus (Bloch). Bull Environ Contamin Toxicol 64, 398405.CrossRefGoogle ScholarPubMed
Shah, S.L. & Altindağ, A. (2004). Hematological parameters of tench (Tinca tinca L.) after acute and chronic exposure to lethal and sublethal mercury treatments. Bull Environ Contamin Toxicol 73, 911918.CrossRefGoogle ScholarPubMed
Shah, S.L. & Altindağ, A. (2005). Alterations in the immunological parameters of tench (Tinca tinca L.) after acute and chronic exposure to lethal and sublethal treatments with mercury, cadmium and lead. Turk J Vet Anim Sci 29, 11631168.Google Scholar
Singh, B.P. & Tandon, P.K. (2009). Effect of river water pollution on haematological parameters of fish, Wallago attu. Res Environ Life Sci 2, 211214.Google Scholar
Suwalsky, M., Norris, B., Villena, F., Sotomayor, P. & Zatta, P. (2004). Aluminium fluoride affects the structure and function of cell membranes. Food Chem Toxicol 42, 925933.CrossRefGoogle ScholarPubMed
Tijani, M.N., Jinno, K. & Hiroshiro, Y. (2004). Environmental impact of heavy metal distribution in water and sediment of Ogunpa River, Ibadan area, south-western Nigeria. J Min Geol 40, 7383.Google Scholar
Tufford, D.L., Samarghitan, C.L., McKeller, H.N., Porter, D.E. & Hussey, J.R. (2003). Impacts of urbanization on nutrient concentrations in small south eastern coastal streams. J Am Water Res Ass 39, 301312.CrossRefGoogle Scholar
UNICEF, WHO (2008). UNICEF and World Health Organization Joint Monitoring Programme for Water Supply and Sanitation. Progress on Drinking Water and Sanitation: Special Focus on Sanitation. New York/Geneva: UNICEF/WHO.Google Scholar
Unlu, E., Akba, O., Sevim, S. & Gumgum, B. (1996). Heavy metal levels in mullet, Liza abu (Heckel, 1843) (Mugilidae) from the Tigris River, Turkey. Fresenius Environ Bull 5, 107112.Google Scholar
U.S. Environmental Protection Agency (1983). Sample preservation. P.P.XVXX. In methods for chemical analysis of water and wastes EPA-600/4-79-020.Google Scholar
Wepener, V., Van Vuren, J.H.J. & Du Preez, H.H. (1992). The effect of hexavalent chromium at different pH values on the hematology of Tilapia sparrmani (Chichlidae). Comp Biochem Physiol 101, 375381.Google Scholar
WHO. (2006). Working together for health, the World Health Report. World Health Organization: Geneva, Switzerland.Google Scholar
Wilson, R. & Taylor, E. (1993). The physiological responses of freshwater rainbow trout (Oncorhynchus mykiss) during acutely lethal copper exposure. J Comp Physiol 16B, 3847.CrossRefGoogle Scholar
Wintrobe, M.M. (1957). Clinical Hematology. Philadelphia, PA: Lea and Febiger.Google Scholar
Witeska, M., Jezierska, B. & Chaber, J. (1995). The influence of cadmium on common carp embryos and larvae. Aquaculture 129, 129132.CrossRefGoogle Scholar
Zaki, M.S., Moustafa, S., Rashad, H. & Sharaf, N. (2008). Assessment of the hazardous effect of lead pollution on Oreochromis niloticus, including hematological,biochemical and immunological parameters. Am Eurasian J Agric Environ Sci 3, 9195.Google Scholar
Zeni, C., Bovolenta, M.R. & Stagni, A. (2002). Occurrence of echinocytosis in circulating RBC of black bullhead, Ictalurus melas (Rafinesque), following exposure to an anionic detergent at sublethal concentrations. Aquat Toxicol 57, 217224.CrossRefGoogle Scholar
Zhao, Y., Sun, X., Zhang, G., Trewyn, B.G., Slowing, I.I. & Lin, V.S. (2011). Interaction of mesoporous silica nano particles with human red blood cell membrane: Size and surface effects. ACS Nano 5, 13661375.CrossRefGoogle ScholarPubMed