Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-07T22:52:55.104Z Has data issue: false hasContentIssue false

Low Doses of Simvastatin Potentiate the Effect of Sodium Alendronate in Inhibiting Bone Resorption and Restore Microstructural and Mechanical Bone Properties in Glucocorticoid-Induced Osteoporosis

Published online by Cambridge University Press:  26 July 2017

Priscila L. Sequetto
Affiliation:
Department of Pharmaceutical Sciences – Health Area, Universidade Federal de Juiz de Fora, Governador Valadares, 35020-220, MG, Brazil Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
Reggiani V. Gonçalves
Affiliation:
Department of Animal Biology, Universidade Federal de Viçosa, MG, Brazil
Aloísio S. Pinto
Affiliation:
Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
Maria G. A. Oliveira
Affiliation:
Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
Izabel R. S. C. Maldonado
Affiliation:
Department of General Biology, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
Tânia T. Oliveira
Affiliation:
Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
Rômulo D. Novaes*
Affiliation:
Institute of Biomedical Sciences, Department Structural Biology, Universidade Federal de Alfenas, Alfenas, 37130-001, MG, Brazil
*
*Corresponding author. romuonovaes@yahoo.com.br
Get access

Abstract

By using an experimental model of dexamethasone-induced osteoporosis we investigated the effects of different therapeutic schemes combining sodium alendronate (SA) and simvastatin on bone mineral and protein composition, microstructural and mechanical remodeling. Wistar rats were randomized into eight groups: G1: non-osteoporotic; G2: osteoporotic; G3, G4, and G5: osteoporotic+SA (0.2, 0.4, and 0.8 mg/kg, respectively); G6, G7, and G8: osteoporotic+SA (0.2, 0.4, and 0.8 mg/kg, respectively)+simvastatin (0.4, 0.6, and 1 mg/kg, respectively). Osteoporosis was induced by dexamethasone (7 mg/kg, i.m.) once a week for 5 weeks. All treatments were administered for 8 weeks. Dexamethasone increased serum levels of alkaline phosphatase, calcium, phosphorus, and urea, especially in non-treated animals, which showed severe osteoporosis. Dexamethasone also induced bone microstructural fragility and reduced mechanical resistance, which were associated with a marked depletion in mineral mass, collagenous and non-collagenous protein levels in cortical and cancellous bone. Although SA has attenuated osteoporosis severity, the effectiveness of drug therapy was enhanced combining alendronate and simvastatin. The restoration in serum parameters, organic and inorganic bone mass, and mechanical behavior showed a dose-dependent effect that was potentially related to the complementary mechanisms by which each drug acts to induce bone anabolism, accelerating tissue repair.

Type
Biological Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellido, T. & Plotkin, L.I. (2011). Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability. Bone 49, 5055.CrossRefGoogle ScholarPubMed
Bonucci, E. & Ballanti, P. (2014). Osteoporosis-bone remodeling and animal models. Toxicol Pathol 42, 957969.CrossRefGoogle ScholarPubMed
Bouxsein, M.L., Boyd, S.K., Christiansen, B.A., Guldberg, R.E., Jepsen, K.J. & Müller, R. (2010). Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25, 14681486.Google Scholar
Bradford, M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.Google Scholar
Briot, K. & Roux, C. (2015). Glucocorticoid-induced osteoporosis. RMD Open 1, e000014.Google Scholar
Cruz-Orive, L., Karlsson, L., Larsen, S. & Wainschtein, F. (1992). Characterizing anisotropy: A new concept. Micron Microsc Acta 23, 7576.CrossRefGoogle Scholar
Cupertino, M.C., Costa, K.L., Santos, D.C., Novaes, R.D., Condessa, S.S., Neves, A.C., Oliveira, J.A. & Matta, S.L. (2013). Long-lasting morphofunctional remodelling of liver parenchyma and stroma after a single exposure to low and moderate doses of cadmium in rats. Int J Exp Pathol 94, 343351.CrossRefGoogle ScholarPubMed
Cupertino, M.D.C., Novaes, R.D., Santos, E.C., Bastos, D.S.S., Marques Dos Santos, D.C., do Carmo Queiroz Fialho, M. & Matta, S.L.P.D. (2017). Cadmium-induced testicular damage is associated with mineral imbalance, increased antioxidant enzymes activity and protein oxidation in rats. Life Sci 175, 2330.CrossRefGoogle ScholarPubMed
Dai, L., Xu, M., Wu, H., Xue, L., Yuan, D., Wang, Y., Shen, Z., Zhao, H. & Hu, M. (2016). The functional mechanism of simvastatin in experimental osteoporosis. J Bone Miner Metab 34, 2332.CrossRefGoogle ScholarPubMed
de Vries, F., Pouwels, S., Lammers, J.W., Leufkens, H.G., Bracke, M., Cooper, C. & van Staa, T.P. (2007). Use of inhaled and oral glucocorticoids, severity of inflammatory disease and risk of hip/femur fracture: a population-based case-control study. J Intern Med 261, 170177.Google Scholar
Dimic, A., Jankovic, D., Jankovic, I., Savic, T. & Karanovic, N. (2010). The effects of one-year simvastatin therapy on women’s bone mineral density. Cent Eur J Med 6, 98102.Google Scholar
Garnero, P. (2008). Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther 12, 157170.Google Scholar
Gimble, J.M. & Nuttall, M.E. (2012). The relationship between adipose tissue and bone metabolism. Clin Biochem 45, 874879.Google Scholar
Grynpas, M.D., Tupy, J.H. & Sodek, J. (1994). The distribution of soluble, mineral-bound, and matrix-bound proteins in osteoporotic and normal bones. Bone 15, 505513.Google Scholar
Hlaing, T.T. & Compston, J.E. (2014). Biochemical markers of bone turnover – Uses and limitations. Ann Clin Biochem 51, 189202.CrossRefGoogle ScholarPubMed
Hurson, C.J., Butler, J.S., Keating, D.T., Murray, D.W., Sadlier, D.M., O’Byrne, J.M. & Doran, P.P. (2007). Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis. BMC Musculoskelet Dis 8, 12.Google Scholar
Jia, D., O’Brien, C.A., Stewart, S.A., Manolagas, S.C. & Weinstein, R.S. (2006). Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 147, 55925599.Google Scholar
Khosla, S., Bilezikian, J.P., Dempster, D.W., Lewiecki, E.M., Miller, P.D., Neer, R.M., Recker, R.R., Shane, E., Shoback, D. & Potts, J.T. (2012). Benefits and risks of bisphosphonate therapy for osteoporosis. J Clin Endocrinol Metab 97, 22722282.Google Scholar
Kourkoumelis, N., Balatsoukas, I. & Tzaphlidou, M. (2012). Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys 38, 279291.CrossRefGoogle ScholarPubMed
Lucinda, L.M., Aarestrup, B.J., Peters, V.M., Reis, J.E., Oliveira, R.S. & Guerra, M.O. (2013). The effect of the Ginkgo biloba extract in the expression of Bax, Bcl-2 and bone mineral content of Wistar rats with glucocorticoid-induced osteoporosis. Phytother Res 27, 515520.Google Scholar
Mandarim-de-Lacerda, C.A. (2003). Stereological tools in biomedical research. An Acad Bras Cienc 75, 469486.CrossRefGoogle ScholarPubMed
Manelli, F. & Giustina, A. (2000). Glucocorticoid-induced osteoporosis. Trends Endocrinol Metab 11, 7985.Google Scholar
Mclaughlin, F., Mackintosh, J., Hayes, B.P., McLaren, A., Uings, I.J., Salmon, P., Humphreys, J., Meldrum, E. & Farrow, S.N. (2002). Glucocorticoid-induced osteopenia in the mouse as assessed by histomorphometry, microcomputed tomography, and biochemical markers. Bone 30, 924930.Google Scholar
Miller, G.K., Valerio, M.G., Pino, M.V., Larson, J.L., Viau, A., Hamelin, N., Labbé, R. & Banks, C.M. (2000). Chronic effects of the novel glucocorticosteroid RPR 106541 administered to beagle dogs by inhalation. Toxicol Pathol 28, 226236.CrossRefGoogle ScholarPubMed
Moraes, G.H.K., Rodrigues, A.C.P., Silva, F.A., Rostagno, H.S., Minafra, C.S. & Bigonha, S.M. (2010). Effects of dietary L-glutamic acid and K vitamin in the biochemical composition in femurs of broilers at 14 days of age. Rev Bras Zootec 39, 796800.CrossRefGoogle Scholar
Nagashima, M., Takahashi, H., Shimane, K., Nagase, Y. & Wauke, K. (2012). Osteogenesis and osteoclast inhibition in rheumatoid arthritis patients treated with bisphosphonates alone or in combination with pitavastatin over an 18-month follow-up after more than 4 years of treatment with bisphosphonates. Arthritis Res Ther 14, R224.CrossRefGoogle ScholarPubMed
Nakashima, Y. & Haneji, T. (2013). Stimulation of osteoclast formation by RANKL requires interferon regulatory factor-4 and is inhibited by simvastatin in a mouse model of bone loss. PLOS One 8, e72033.CrossRefGoogle Scholar
Novaes, R.D., Penitente, A.R., Gonçalves, R.V., Talvani, A., Peluzio, M.C.G., Neves, C.A., Natali, A.J. & Maldonado, I.R.S.C. (2013). Trypanosoma cruzi infection induces morphological reorganization of the myocardium parenchyma and stroma, and modifies the mechanical properties of atrial and ventricular cardiomyocytes in rats. Cardiovasc Pathol 22, 270279.Google Scholar
Oryan, A., Kamali, A. & Moshiri, A. (2015). Potential mechanisms and applications of statins on osteogenesis: current modalities, conflicts and future directions. J Control Release 215, 1224.CrossRefGoogle Scholar
Ribeiro, R.A., Ziegelmann, P.K., Duncan, B.B., Stella, S.F., da Costa Vieira, J.L., Restelatto, L.M., Moriguchi, E.H. & Polanczyk, C.A. (2013). Impact of statin dose on major cardiovascular events: A mixed treatment comparison meta-analysis involving more than 175,000 patients. Int J Cardiol 166, 431439.CrossRefGoogle Scholar
Rogers, M.J., Crockett, J.C., Coxon, F.P. & Mönkkönen, J. (2011). Biochemical and molecular mechanisms of action of bisphosphonates. Bone 49, 3441.CrossRefGoogle ScholarPubMed
Rosenson, R.S., Tangney, C.C., Langman, C.B., Parker, T.S., Levine, D.M. & Gordon, B.R. (2005). Short-term reduction in bone markers with high-dose simvastatin. Osteoporos Int 16, 12721276.Google Scholar
Ruan, F., Zheng, Q. & Wang, J. (2012). Mechanisms of bone anabolism regulated by statins. Biosci Rep 32, 511519.CrossRefGoogle ScholarPubMed
Russell, R.G.G. (2011). Bisphosphonates: The first 40 years. Bone 49, 219.CrossRefGoogle ScholarPubMed
Sasaki, N., Kusano, E., Ando, Y., Yano, K., Tsuda, E. & Asano, Y. (2001). Glucocorticoid decreases circulating osteoprotegerin (OPG): Possible mechanism for glucocorticoid induced osteoporosis. Nephrol Dial Transplant 16, 479482.CrossRefGoogle ScholarPubMed
Sequetto, P.L., Oliveira, T.T., Maldonado, I.R., Augusto, L.E., Mello, V.J., Pizziolo, V.R., Almeida, M.R., Silva, M.E. & Novaes, R.D. (2014). Naringin accelerates the regression of pre-neoplastic lesions and the colorectal structural reorganization in a murine model of chemical carcinogenesis. Food Chem Toxicol 64, 200209.CrossRefGoogle Scholar
Sequetto, P.L., Oliveira, T.T., Soares, I.A., Maldonado, I.R., Mello, V.J., Pizziolo, V.R., Almeida, M.R. & Novaes, R.D. (2013). The flavonoid chrysin attenuates colorectal pathological remodeling reducing the number and severity of pre-neoplastic lesions in rats exposed to the carcinogen 1,2-dimethylhydrazine. Cell Tissue Res 352, 327339.CrossRefGoogle Scholar
Shefrin, A.E. & Goldman, R.D. (2009). Use of dexamethasone and prednisone in acute asthma exacerbations in pediatric patients. Can Fam Physician 55, 704706.Google ScholarPubMed
Soares, E.A., Novaes, R.D., Nakagaki, W.R., Fernandes, G.J., Garcia, J.A. & Camilli, J.Á. (2015). Metabolic and structural bone disturbances induced by hyperlipidic diet in mice treated with simvastatin. Int J Exp Pathol 96, 261268.Google Scholar
Sunyecz, J. (2008). Optimizing dosing frequencies for bisphosphonates in the management of postmenopausal osteoporosis: patient considerations. Clin Interv Aging 3, 611627.Google Scholar
Tanriverdi, H.A., Barut, A. & Sarikaya, S. (2005). Statins have additive effects to vertebral bone mineral density in combination with risedronate in hypercholesterolemic postmenopausal women. Eur J Obstet Gynecol Reprod Biol 120, 6368.CrossRefGoogle ScholarPubMed
Tsubaki, M., Satou, T., Itoh, T., Imano, M., Yanae, M., Kato, C., Takagoshi, R., Komai, M. & Nishida, S. (2012). Bisphosphonate- and statin-induced enhancement of OPG expression and inhibition of CD9, M-CSF, and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2. Mol Cell Endocrinol 361, 219231.CrossRefGoogle ScholarPubMed
Vasikaran, S., Eastell, R., Bruyère, O., Foldes, A.J., Garnero, P., Griesmacher, A., McClung, M., Morris, H.A., Silverman, S., Trenti, T., Wahl, D.A., Cooper, C. & Kanis, J.A., IOF-IFCC Bone Marker Standards Working Group (2011). Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos Int 22, 391420.Google Scholar
Weiner, S. & Wagner, H.D. (1998). The material bone: Structure mechanical function relations. Annu Rev Mater Sci 28, 271298.Google Scholar
Weinstein, R.S. (2001). Glucocorticoid-induced osteoporosis. Rev Endocr Metab Disord 2, 6573.CrossRefGoogle ScholarPubMed
Weinstein, R.S. (2012). Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin North Am 41, 595611.Google Scholar
Wheater, G., Elshahaly, M., Tuck, S.P., Datta, H.K. & van Laar, J.M. (2013). The clinical utility of bone marker measurements in osteoporosis. J Transl Med 11, 201.Google Scholar
Whittier, X. & Saag, K. (2016). Glucocorticoid-induced osteoporosis. Rheum Dis Clin North Am 42, 177189.Google Scholar
Xu, X.C., Chen, H., Zhang, X., Zhai, Z.J., Liu, X.Q., Qin, A. & Lu, E.Y. (2014). Simvastatin prevents alveolar bone loss in an experimental rat model of periodontitis after ovariectomy. J Transl Med 12, 284.Google Scholar
Zhang, Y., Bradley, A.D., Wang, D. & Reinhardt, R.A. (2014). Statins, bone metabolism and treatment of bone catabolic diseases. Pharmacol Res 88, 5361.Google Scholar
Zimmermann, E.A., Busse, B. & Ritchie, R.O. (2015). The fracture mechanics of human bone: Influence of disease and treatment. Bonekey Rep 4, 743.CrossRefGoogle ScholarPubMed