Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T10:08:41.562Z Has data issue: false hasContentIssue false

Letter to the Editor: Image Formation in the High-Resolution Transmission Electron Microscope

Published online by Cambridge University Press:  01 August 2004

Michael A. O'Keefe
Affiliation:
Materials Sciences Division, LBNL 2-200, 1 Cyclotron Road, Berkeley, CA 94720, USA, maok@LBL.gov
Get access

Extract

A recent article in these pages compares STEM images with an image obtained with the One-Ångstrom Microscope (OÅM) at Lawrence Berkeley National Laboratory (LBNL). Although the experimental work is of excellent quality, Diebold et al. (2003) offer an incorrect explanation of the image formation process in the high-resolution transmission electron microscope. It is important that this misinterpretation be corrected before it comes to be accepted as factual by other scientists who are not expert in the field of high-resolution transmission electron microscopy.

Type
Letter to the Editor
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coene, W.M.J., Thust, A., Op de Beeck, M., & Van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.Google Scholar
Cowley, J.M. (1975). Diffraction Physics. Amsterdam, New York: North Holland/American Elsevier.
Cowley, J.M. & Iijima, S. (1972). Electron microscope image contrast for thin crystals. Z Naturforsch 27a, 445451.Google Scholar
Diebold, A.C., Foran, B., Kisielowski, C., Muller, D.A., Pennycook, S.J., Principe, E., & Stemmer, S. (2003). Thin dielectric film thickness determination by advanced transmission electron microscopy. Microsc Microanal 9, 493508.Google Scholar
Hofmann, D. & Ernst, F. (1994). Quantitative high-resolution transmission electron microscopy of the incoherent Σ3 (211) boundary in Cu. Ultramicroscopy 53, 205221.Google Scholar
Lichte, H. (1991). Optimum focus for taking electron holograms. Ultramicroscopy 38, 1322.Google Scholar
O'Keefe, M.A. (1992). “Resolution” in high-resolution electron microscopy. Ultramicroscopy 47, 282297.Google Scholar
O'Keefe, M.A. (1993). Using coherent illumination to extend HRTEM resolution: Why we need a FEG-TEM for HREM. In LBL Symposium on Microstructures of Materials, K. Krishnan, (Ed.), pp. 121126. Berkeley, CA: San Francisco Press.
O'Keefe, M.A., Buseck, P.R., & Iijima, S. (1978). Computed crystal structure images for high resolution electron microscopy. Nature 274, 322324.Google Scholar
O'Keefe, M.A., Hetherington, C.J.D., Wang, Y.C., Nelson, E.C., Turner, J.H., Kisielowski, C., Malm, J.-O., Mueller, R., Ringnalda, J., Pan, M., & Thust, A. (2001a). Sub-Ångstrom high-resolution transmission electron microscopy at 300keV. Ultramicroscopy 89, 215241.Google Scholar
O'Keefe, M.A., Nelson, E.C., Wang, Y.C., & Thust, A. (2001b). Sub-Ångstrom resolution of atomistic structures below 0.8Å. Philos Mag B 81, 18611878.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.Google Scholar
Shao-Horn, Y., Croguennec, L., Delmas, C., Nelson, E.C., & O'Keefe, M.A. (2003). Atomic resolution of lithium ions in LiCoO2 battery material. Nat Mater 2, 464467.Google Scholar
Smith, D.J. (1997). The realization of atomic resolution in the electron microscope. Rep Prog Phys 60, 15131580.Google Scholar
Thust, A., Coene, W.M.J., Op de Beeck, M., & Van Dyck, D. (1996). Focal-series reconstruction in HRTEM: Simulation studies on nonperiodic objects. Ultramicroscopy 64, 211230.Google Scholar
Wenk, H.-R., Downing, K.H., Meisheng, Hu, & O'Keefe, M.A. (1992). 3D structure determination from electron-microscope images: Electron crystallography of staurolite. Acta Cryst A 48, 700716.Google Scholar