Skip to main content Accessibility help
×
Home

Intrinsically Fluorescent Silica Nanocontainers: A Promising Theranostic Platform

  • Ana S. Rodrigues (a1), Tânia Ribeiro (a1), Fábio Fernandes (a1), José Paulo S. Farinha (a1) and Carlos Baleizão (a1)...

Abstract

In this paper we describe the preparation of fluorescent mesoporous silica nanoparticles (MSNs) for traceable drug delivery systems. The nanoparticles were prepared following a sol–gel procedure, incorporating a modified perylenediimide dye in the silica structure. Transmission electron microscopy and scanning electron microscopy show that the nanoparticles are monodispersed, with a spheroid shape and a raspberry-type surface morphology. The hybrid MSNs are robust, maintaining the mesoporous structure after template removal, with a pore diameter above 2 nm. A polymer shell was synthesized from the external surface of the hybrid nanoparticles by atom transfer radical polymerization, showing temperature-switchable collapsed/expanded conformation control. The fluorescent properties of the perylenediimide dye incorporated in the MSN pore walls are intact, and internalization in HEK293 cells shows that the nanoparticles are efficiently dispersed in the cytosol. These results show that the mesoporous fluorescent hybrid nanoparticles are an excellent platform for development of a traceable drug delivery system.

Copyright

Corresponding author

* Corresponding author. E-mail: farinha@ist.utl.pt
** Corresponding author. E-mail: carlos.baleizao@ist.utl.pt

References

Hide All
Braunecker, W.A. & Matyjaszewski, K. (2007). Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 32, 93146.
Cohen Stuart, M.A., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. & Minko, S. (2010). Emerging applications of stimuli-responsive polymer materials. Nat Mater 9, 101113.
Hoffmann, F., Cornelius, M., Morell, J. & Froba, M. (2006). Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45, 32163251.
Huang, C., Barlow, S. & Marder, S.R. (2011). Perylene-3,4,9,10-tetracarboxylic acid diimides: Synthesis, physical properties, and use in organic electronics. J Org Chem 76, 23862407.
Kelkar, S.S. & Reineke, T.M. (2011). Theranostics: Combining imaging and therapy. Bioconjugate Chem 22, 18791903.
Lee, J.E., Lee, N., Kim, T., Kim, J. & Hyeon, T. (2011). Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44, 893902.
Li, C. & Benicewicz, B.C. (2005). Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 38, 59295936.
Lin, Y.S., Tsai, C.-P., Huang, H.-Y., Kuo, C.-T., Hung, T., Huang, D.M., Chen, Y.-C. & Mou, C.-Y. (2005). Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17, 45704573.
Luo, Y. & Lin, J.J. (2006). Solvent induced different morphologies of bis(propyl)triethoxysilane substituted perylenediimide and their optical properties. Colloid Interface Sci 297, 625630.
Lutz, J.-F. (2011). Thermo-switchable materials prepared using the OEGMA-platform. Adv Mater 23, 22372243.
Lutz, J.-F. & Hoth, A. (2006). Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethylmethacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39, 893896.
Matyjaszewski, K. & Tsarevsky, N.V. (2009). Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1, 276288.
Roy, D., Cambre, J.N. & Sumerlin, B.S. (2010). Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35, 278301.
Siegwart, D.J., Oh, J.K. & Matyjaszewski, K. (2012). ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 37, 1837.
Slowing, I.I., Lin, V.S.Y., Wu, C.W. & Vivero-Escoto, J.L. (2009). Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5, 5762.
Slowing, I.I., Vivero-Escoto, J.L., Trewyn, B.G. & Lin, V.S.Y. (2010). Mesoporous silica nanoparticles: Structural design and applications. J Mater Chem 20, 79247937.
Soler-Illia, G.J.A.A. & Azzaroni, O. (2011). Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem Soc Rev 40, 11071150.
Stutz, C., Bilecka, I., Thunemann, A.F., Niederbergerb, M. & Borner, H.G. (2012). Superparamagnetic core–shell nanoparticles as solid supports for peptide synthesis. Chem Commun 48, 71767178.
Tang, F., Li, L. & Chen, D. (2012). Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv Mater 24, 15041534.
Weil, T., Vosch, T., Hofkens, J., Peneva, K. & Müllen, K. (2010). The rylene colorant family-tailored nanoemitters for photonics research and applications. Angew Chem Int Ed 49, 90689093.
Zhan, X., Facchetti, A., Barlow, S., Marks, T.J., Ratner, M.A., Wasielewski, M.R. & Marder, S.R. (2011). Rylene and related diimides for organic electronics. Adv Mater 23, 268284.

Keywords

Intrinsically Fluorescent Silica Nanocontainers: A Promising Theranostic Platform

  • Ana S. Rodrigues (a1), Tânia Ribeiro (a1), Fábio Fernandes (a1), José Paulo S. Farinha (a1) and Carlos Baleizão (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed