Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T12:48:47.729Z Has data issue: false hasContentIssue false

Innovative High Gas Pressure Microscopy Chamber Designed for Biological Cell Observation

Published online by Cambridge University Press:  26 January 2016

Mélanie Ragon
Affiliation:
UMR A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
Hue Nguyen Thi Minh
Affiliation:
UMR A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
Stéphane Guyot
Affiliation:
UMR A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
Pauline Loison
Affiliation:
UMR A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
Gaëtan Burgaud
Affiliation:
Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Université Européenne de Bretagne/Université de Brest/ESMISAB, Technopole Brest-Iroise, 29280 Plouzané, France
Sébastien Dupont
Affiliation:
UMR A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
Laurent Beney
Affiliation:
UMR A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
Patrick Gervais
Affiliation:
UMR A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
Jean-Marie Perrier-Cornet*
Affiliation:
UMR A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
*
*Corresponding author. jperrier@u-bourgogne.fr
Get access

Abstract

An original high-pressure microscopy chamber has been designed for real-time visualization of biological cell growth during high isostatic (gas or liquid) pressure treatments up to 200 MPa. This new system is highly flexible allowing cell visualization under a wide range of pressure levels as the thickness and the material of the observation window can be easily adapted. Moreover, the design of the observation area allows different microscope objectives to be used as close as possible to the observation window. This chamber can also be temperature controlled. In this study, the resistance and optical properties of this new high-pressure chamber have been tested and characterized. The use of this new chamber was illustrated by a real-time study of the growth of two different yeast strains – Saccharomyces cerevisiae and Candida viswanathii – under high isostatic gas pressure (30 or 20 MPa, respectively). Using image analysis software, we determined the evolution of the area of colonies as a function of time, and thus calculated colony expansion rates.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, F. & Horikoshi, K. (2001). The biotechnological potential of piezophiles. Trends Biotechnol 19(3), 102108.CrossRefGoogle ScholarPubMed
Abe, F. (2007). Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: Perspectives from piezophysiology. Biosci Biotechnol Biochem 71(10), 23472357.CrossRefGoogle ScholarPubMed
Arao, T., Hara, Y., Suzuki, Y. & Tamura, K (2005). Effect of high-pressure gas on yeast growth. Biosci Biotechnol Biochem 69(7), 13651371.CrossRefGoogle ScholarPubMed
Besch, S.R. & Hogan, P.M. (1996). A small chamber for making optical measurements on single living cells at elevated hydrostatic pressure. Undersea Hyperbaric Med 23(3), 175184.Google ScholarPubMed
Bartlett, D.H. (2002). Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595(1–2), 367381.CrossRefGoogle ScholarPubMed
Birrien, J.L., Zeng, X., Jebbar, M., Cambon-Bonavita, M.A., Querellou, J., Oger, P., Bienvenu, N., Xiao, X. & Prieur, D. (2011). Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Micr 61, 28272831.CrossRefGoogle ScholarPubMed
Burgaud, G., Arzur, D., Durand, L., Cambon-Bonavita, M.A. & Barbier, G. (2010). Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol 73(1), 121133.Google ScholarPubMed
Burgaud, G, Nguyen Thi Minh, H., Arzur, D., Coton, M., Perrier-Cornet, J.M., Jebbar, M. & Barbier, G. (2015). Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 166(9), 700709.CrossRefGoogle ScholarPubMed
Espinasse, V., Perrier-Cornet, J.M., Marechal, P.A. & Gervais, P. (2008). High gas pressure effects on yeast. Biotechnol Bioeng 101(4), 729738.CrossRefGoogle ScholarPubMed
Fang, J., Zhang, L. & Bazylinski, D.A. (2010). Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18(9), 413422.CrossRefGoogle ScholarPubMed
Frey, B., Hartmann, M., Herrmann, M., Meyer-Pittroff, R., Sommer, K. & Bluemelhuber, G. (2006). Microscopy under pressure – An optical chamber system for fluorescence microscopy analysis of living cells under high hydrostatic pressure. Microsc Res Tech 69(2), 6572.CrossRefGoogle ScholarPubMed
Jorgensen, B.B. & Boetius, A. (2007). Feast and famine – Microbial life in the deep-sea bed. Nat Rev Microbiol 5(10), 770781.CrossRefGoogle ScholarPubMed
Koyama, S., Miwa, T., Sato, T. & Aizawa, M. (2001). Optical chamber system designed for microscopy observation of living cells under extremely high hydrostatic pressure. Extremophiles 5(6), 409415.CrossRefGoogle ScholarPubMed
Lopes, M.L.M., Mesquita, V.L.V., Chiaradia, A.C.N., Fernandes, A.A.R. & Fernandes, P.M.B. (2010). High hydrostatic pressure processing of tropical fruits – Importance for maintenance of the natural food properties. Ann N Y Acad Sci 1189, 615.CrossRefGoogle Scholar
Mota, M.J., Lopes, R.P., Delgadillo, I. & Saraiva, J.A. (2013). Microorganisms under high pressure – Adaptation, growth and biotechnological potential. Biotechnol Adv 31(8), 14261434.CrossRefGoogle ScholarPubMed
Moussa, M., Espinasse, V., Perrier-Cornet, J.M. & Gervais, P. (2009). Pressure treatment of Saccharomyces cerevisiae in low-moisture environments. Appl Microbiol Biotechnol 85(1), 165174.CrossRefGoogle ScholarPubMed
Nishiyama, M. & Kojima, S. (2012). Bacterial motility measured by a miniature chamber for high-pressure microscopy. Int J Mol Sci 13(7), 92259239.CrossRefGoogle ScholarPubMed
Oger, P.M., Daniel, I. & Picard, A. (2006). Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T. Biochim Biophys Acta Proteins Proteomics 1764(3), 434442.CrossRefGoogle ScholarPubMed
Orsi, W.D., Edgcomb, V.P., Christman, G.D. & Biddle, J.F. (2013). Gene expression in the deep biosphere. Nature 499, 205208.CrossRefGoogle ScholarPubMed
Pagliaro, L., Reitz, F. & Wang, J. (1995). An optical pressure chamber designed for high numerical aperture studies on adherent living cells. Undersea Hyperbaric Med 22(2), 171181.Google ScholarPubMed
Perrier-Cornet, J.M., Marechal, P.A. & Gervais, P. (1995). A new design intended to relate high pressure treatment to yeast cell mass transfer. J Biotech 41(1), 4958.CrossRefGoogle ScholarPubMed
Rédou, V., Ciobanu, M.C., Pachiadaki, M.G., Edgcomb, V., Alain, K., Barbier, G. & Burgaud, G. (2014). In‐depth analyses of deep subsurface sediments using 454‐pyrosequencing reveals a reservoir of buried fungal communities at record‐breaking depths. FEMS Microbiol Ecol 90(3), 908921.CrossRefGoogle ScholarPubMed
Salmon, E.D. & Ellis, G.W. (1975). A new miniature hydrostatic pressure chamber for microscopy. Strain-free optical glass windows facilitate phase-contrast and polarized-light microscopy of living cells. Optional fixture permits simultaneous control of pressure and temperature. J Cell Biol 65(3), 587602.CrossRefGoogle ScholarPubMed
Seo, M., Koyama, S., Toyofuku, T., Kojima, S. & Watanabe, H. (2013). Determination of extremely high pressure tolerance of brine shrimp larvae by using a new pressure chamber system. Zool Sci 30(11), 919923.CrossRefGoogle ScholarPubMed
Simonato, F., Campanaro, S., Lauro, F.M., Vezzi, A., D’Angelo, M., Vitulo, N., Valle, G. & Bartlett, D.H. (2006). Piezophilic adaptation: a genomic point of view. J Biotechnol 126(1), 1125.CrossRefGoogle ScholarPubMed
Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R., Arrieta, J.M. & Herndl, G.J. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103(32), 1211512120.CrossRefGoogle ScholarPubMed
Vass, H., Black, S.L., Herzig, E.M., Ward, F.B., Clegg, P.S. & Allen, R.J. (2010). A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure. Rev Sci Instrum 81(5), 053710.CrossRefGoogle ScholarPubMed
Vass, H., Lucas Black, S., Flors, C., Lloyd, D., Bruce Ward, F. & Allen, R.J. (2013). Single-molecule imaging at high hydrostatic pressure. Appl Phys Lett 102(15), 154103.CrossRefGoogle Scholar
Zeng, X., Birrien, J.L., Fouquet, Y., Cherkashov, G., Jebbar, M., Querellou, J., Oger, P., Cambon-Bonavita, M.A., Xiao, X. & Prieur, D. (2009). Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3, 873876.CrossRefGoogle ScholarPubMed
Zhang, Y., Li, X., Bartlett, D.H. & Xiao, X. (2015). Current developments in marine microbiology: High-pressure biotechnology and the genetic engineering of piezophiles. Curr Opin Biotech 33, 157164.CrossRefGoogle ScholarPubMed