Skip to main content Accessibility help
×
Home

In-Depth Fluorescence Lifetime Imaging Analysis Revealing SNAP25A-Rabphilin 3A Interactions

  • Jiung-De Lee (a1) (a2), Ping-Chun Huang (a2), Yi-Cheng Lin (a2), Lung-Sen Kao (a3), Chien-Chang Huang (a4), Fu-Jen Kao (a2), Chung-Chih Lin (a3) and De-Ming Yang (a1) (a2)...

Abstract

The high sensitivity and spatial resolution enabled by two-photon excitation fluorescence lifetime imaging microscopy/fluorescence resonance energy transfer (2PE-FLIM/FRET) provide an effective approach that reveals protein-protein interactions in a single cell during stimulated exocytosis. Enhanced green fluorescence protein (EGFP)–labeled synaptosomal associated protein of 25 kDa (SNAP25A) and red fluorescence protein (mRFP)–labeled Rabphillin 3A (RPH3A) were co-expressed in PC12 cells as the FRET donor and acceptor, respectively. The FLIM images of EGFP-SNAP25A suggested that SNAP25A/RPH3A interaction was increased during exocytosis. In addition, the multidimensional (three-dimensional with time) nature of the 2PE-FLIM image datasets can also resolve the protein interactions in the z direction, and we have compared several image analysis methods to extract more accurate and detailed information from the FLIM images. Fluorescence lifetime was fitted by using one and two component analysis. The lifetime FRET efficiency was calculated by the peak lifetime (τpeak) and the left side of the half-peak width (τ1/2), respectively. The results show that FRET efficiency increased at cell surface, which suggests that SNAP25A/RPH3A interactions take place at cell surface during stimulated exocytosis. In summary, we have demonstrated that the 2PE-FLIM/FRET technique is a powerful tool to reveal dynamic SNAP25A/RPH3A interactions in single neuroendocrine cells.

Copyright

Corresponding author

Corresponding author. E-mail: yang.deming@gmail.com

References

Hide All
Aikawa, Y., Lynch, K.L., Boswell, K.L. & Martin, T.F.J. (2006). A second SNARE role for exocytic SNAP25 in endosome fusion. Mol Biol Cell 17, 21132124.
An, S.J. & Almers, W. (2004). Tracking SNARE complex formation in live endocrine cells. Science 306, 10421046.
Axelrod, D. (2001). Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764774.
Bai, J. & Chapman, E.R. (2004). The C2 domains of synaptotagmin-partners in exocytosis. Trends Biochem Sci 29, 143151.
Becherer, U. & Rettig, J. (2006). Vesicle pools, docking, priming and release. Cell Tissue Res 326, 393407.
Burré, J. & Volknandt, W. (2007). The synaptic vesicle proteome. J Neurochem 101, 14481462.
Chang, C.C., Chu, J.F., Kao, F.J., Chiu, Y.C., Lou, P.J., Chen, H.C. & Chang, T.C. (2006). Verification of antiparallel G-quadruplex structure in human telomeres by using two-photon excitation fluorescence lifetime imaging microscopy of the 3,6-Bis(1-methyl-4-vinylpyridinium)carbazole diiodide molecule. Anal Chem 78, 28102815.
Chen, Y., Mills, J.D. & Periasamy, A. (2003). Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71, 528541.
Deák, F., Shin, O.H., Tang, J., Hanson, P., Ubach, J., John, R., Rizo, J., Kavalali, E.T. & Südhof, T.C. (2006). Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles from fusion. EMBO J 25, 28562866.
Gratton, E., Breusegem, S., Sutin, J., Ruan, Q. & Barry, N. (2003). Fluorescence lifetime imaging for the two-photon microscope: Time-domain and frequency-domain methods. J Biomed Optics 8, 381390.
Jackson, M.B. & Chapman, E.R. (2006). Fusion pores and fusion machines in Ca2+-triggered exocytosis. Ann Rev Biophys Biomol Struct 35, 135160.
Lee, J.D., Chang, Y.F., Kao, F.J., Kao, L.S., Lin, C.C., Lu, A.C., Shyyu, B.C., Chiou, S.H. & Yang, D.M. (2008). Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique. Microsc Res Tech 71, 2634.
Lin, C.C., Huang, C.C., Lin, K.H., Cheng, K.H., Yang, D.M., Tsai, Y.S., Ong, R.Y., Huang, Y.N. & Kao, L.S. (2007). Visualization of Rab3A dissociation during exocytosis: A study by total internal reflection microscopy. J Cell Physiol 211, 316326.
Loranger, S.S. & Linder, M.E. (2002). SNAP-25 traffics to the plasma membrane by a syntaxin-independent mechanism. J Biol Chem 277, 3430334309.
Martens, S., Kozlov, M.M. & McMahon, H.T. (2007). How synaptotagmin promotes membrane fusion. Science 316, 12051208.
Medline, C., McDonald, A., Bergmann, A. & Duncan, R.R. (2007). Time-correlated single photon counting FLIM: Some considerations for physiologists. Micros Res Tech 70, 420425.
Millington, M., Grindlay, G.J., Altenbach, K., Neely, R.K., Kolch, W., Bencina, M., Read, N.D., Jones, A.C., Dryden, D.T. & Magennis, S.W. (2007). High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Biophys Chem 127, 155164.
Ostermeier, C. & Brunger, A.T. (1999). Structural basis of rab effector specificity: Crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96, 363374.
Peter, M., Ameer-Beg, S.M., Hughes, M.K.Y., Keppler, M.D., Prag, S., Marsh, M., Vojnovic, B. & Ng, T. (2005). Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophy J 88, 12241237.
Piston, D.W. & Kremers, G.J. (2007). Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem Sci 32, 407414.
Presley, J.F. (2005). Imaging the secretory pathway: The past and future impact of live cell optical techniques. Biochim Biophys Acta 1744, 259272.
Rizo, J., Chen, X. & Arac, D. (2006). Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trend Cell Biol 16, 339350.
Schneckenburger, H. (2005). Total internal reflection fluorescence microscopy: Technical innovations and novel applications. Curr Opin Biotech 16, 1318.
Schneckenburger, H., Stock, K., Lyttek, M., Strauss, W.S.L. & Sailer, R. (2004). Fluorescence lifetime imaging (FLIM) of rhodamine 123 in living cells. Photochem Photobiol Sci 3, 127131.
Shirataki, H., Kaibuchi, K., Sakoda, T., Kishida, S., Yamaguchi, T., Wada, K., Miyazaki, M. & Takai, Y. (1993). Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol Cell Biol 13, 20612068.
Steyer, J.A. & Almers, W. (2001). A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2, 268275.
Sugita, S. (2007). Mechanisms of exocytosis. Acta Physiologica 192, 185193. doi:10.1111/j.1748-1716.2007.01803.x.
Treanor, B., Lanigan, P.M., Suhling, K., Schreiber, T., Munro, I., Neil, M.A., Phillips, D., Davis, D.M. & French, P.M. (2005). Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse. J Microsc 217, 3643.
Tsuboi, T. & Fukuda, M. (2005). The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J Biol Chem 280, 3925339259.
Tsuboi, T., Kanno, E. & Fukuda, M. (2007). The polybasic sequence in the C2B domain of rabphilin is required for the vesicle docking step in PC12 cells. J Neurochem 100, 770779.
Ubach, J., García, J., Nittler, M.P., Südhof, T.C. & Rizo, J. (1999). Structure of the Janus-faced C2B domain of rabphilin. Nat Cell Biol 1, 106112.
Vogel, S.S., Thaler, C. & Koushik, S.V. (2006). Fanciful FRET. Sci STKE 331, re2.
Yang, D.M., Huang, C.C., Lin, H.Y., Tsai, D.P., Kao, L.S., Chi, C.W. & Lin, C.C. (2003). Tracking of secretory vesicles of PC12 cells using total internal reflection fluorescence microscopy. J Microsc 209, 223227.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed