Skip to main content Accessibility help

In Situ TEM Studies of Metal–Carbon Reactions

  • Robert Sinclair (a1), Toshio Itoh (a1) (a2) and Richard Chin (a1)


The reactions which occur between amorphous carbon and a number of first transition metals (Ti, Cr, Fe, Co, Ni, and Cu) have been studied by transmission electron microscopy (TEM). The materials are in thin-film form with the metal layer sandwiched between thicker carbon layers. In four cases, the predominant reaction is the graphitization of the amorphous carbon, at temperatures well below 800°C. This is brought about by the elements themselves in the case of Co and Ni, and by metastable carbides in the case of Fe (Fe3C) and Cr (Cr3C2−x). The Ti–C and Cu–C systems do not exhibit graphitization. For the former, only TiC is produced up to 1000°C, while the carbon does not react at all with copper. In situ TEM studies show the mechanism to be of the dissolution-precipitation type, which is equivalent to the metal-mediated crystallization process for amorphous silicon and germanium. The heat of graphitization is found to be 18–19 kcal/mol-C by differential scanning calorimetry.




Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed