Skip to main content Accessibility help
×
Home

In situ Determination and Imaging of Physical Properties of Soft Organic Materials by Analytical Transmission Electron Microscopy

  • Nadejda B. Matsko (a1), Franz P. Schmidt (a2) (a3), Ilse Letofsky-Papst (a2), Artem Rudenko (a4) and Vikas Mittal (a5)...

Abstract

Analytical transmission electron microscopy (ATEM) offers great flexibility in identification of the structural—chemical organization of soft materials at the level of individual macromolecules. However, the determination of mechanical characteristics such as hardness/elasticity of the amorphous and polycrystalline organic substances by ATEM has been problematic so far. Here, we show that energy filtered TEM (EFTEM) measurements enable direct identification and study of mechanical properties in complex (bio-)polymer systems of relevance for different industrial and (bio-)medical applications. We experimentally demonstrate strong correlations between hardness/elasticity of different polymers (polycaprolactone, polylactid, polyethelene, etc.) and their volume plasmon energy. Thickness and anisotropy effects, which substantially mask the material contrast in EFTEM bulk plasmon images, can be adequately removed by normalizing the latter by carbon elemental map. EFTEM data has been validated using atomic force microscopy phase images, where phase shift related to the hardness and elastic modulus of the materials.

Copyright

Corresponding author

* Corresponding author. nadejda.matsko@felmi-zfe.at

References

Hide All
Banerjea, A. & Smith, J.R. (1988). Origins of the universal binding-energy relation. Phys Rev B 37(12), 66326645.
Bornscheuer, U.T., Huisman, G.W., Kazlauskas, R.J., Lutz, S., Moore, J.C. & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature 485, 185194.
Botton, G. (2007). Analytical electron microscopy. In Science of Microscopy, Hawkes, P.W. & Spence, J.C.H. (Eds.), pp. 273405. Berlin: Springer.
Buurmans, I.L.C. & Weckhuysen, B.M. (2012). Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat Chem 4, 873886.
Cowie, J.M.G. & Arrighi, V. (2007). Polymers: Chemistry and Physics of Modern Materials. Boca Raton: CRC Press.
Daniels, H.R., Brydson, R., Brown, A. & Rand, B. (2003). Quantitative valence plasmon mapping in the TEM: Viewing physical properties at the nanoscale. Ultramicroscopy 96(3–4), 547558.
Egerton, R. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer.
Egerton, R.F. (2007). Electron energy-loss spectroscopy in TEM. Rep Prog Phys 72, 125.
Ferrante, J., Schlosser, H. & Smith, J.R. (1991). Global expressions for presenting diatomic potential-energy curves. Phys Rev B 43, 34873494.
García De Abajo, F.J. (2010). Optical excitations in electron microscopy. Rev Modern Phys 82(1), 209275.
Graetzel, M., Janssen, R.A.J., Mitzi, D.B. & Sargent, E.H. (2012). Materials interface engineering for solution-processed photovoltaics. Nature 488, 304312.
Haynes, W.M. (2011). CRC Handbook of Chemistry and Physics, 92nd ed. Boca Raton: CRC Press.
Hofer, F., Grogger, W., Kothleitner, G. & Warbichler, P. (1997). Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy 67, 83103.
Howe, J.M. & Oleshko, V.P. (2004). Application of valence electron energy-loss spectroscopy and plasmon energy mapping for determining material properties at the nanoscale. J Electron Microsc 53(4), 339351.
Laffont, L., Monthioux, M. & Serin, V. (2002). Plasmon as a tool for in situ evaluation of physical properties for carbon materials. Carbon 40(5), 767780.
Leapman, R.D. (1986). Microbeam Analysis. San Francisco: San Francisco Press.
Magonov, S. & Reneker, D. (1997). Characterization of polymer surfaces with atomic force microscopy. Annu Rev Mater Sci 27, 175222.
Matsko, N. (2007). Atomic force microscopy applied to study macromolecular content of embedded biological material. Ultramicroscopy 107, 95105.
Matsko, N.B., Letofsky-Papst, I., Albu, M. & Mittal, V. (2013). An analytical technique to extract surface information of negatively stained or heavy-metal shadowed organic materials within the TEM. Microsc Microanal 19, 642651.
Mittal, V. & Matsko, N.B. (2012). Analytical Imaging Techniques for Soft Matter Characterization. Heidelberg: Springer.
Monthioux, M., Soutric, F. & Serin, V. (1997). Recurrent correlation between the electron energy loss spectra and mechanical properties for carbon fibers. Carbon 35(10–11), 16601664.
Nellist, P.D. (2007). Scanning transmission electron microscopy . In Science of Microscopy, Hawkes, P.W. & Spence, J.C.H. (Eds.), pp. 65132. Berlin: Springer.
Nili, H., Kalantar-zadeh, K., Bhaskaran, M. & Sriram, S. (2013). In situ nanoindentation: Probing nanoscale multifunctionality. Prog Mater Sci 58, 129.
Oleshko, V.P. (2002). In Industrial Applications of Electron Microscopy, New York: M. Dekker.
Oleshko, V.P. (2008). Size confinement effects on electronic and optical properties of silver halide nanocrystals as probed by cryo-EFTEM and EELS. Plasmonics 3(1), 4146.
Oleshko, V.P. (2012). The use of plasmon spectroscopy and imaging in a transmission electron microscope to probe physical properties at the nanoscale. J Nanosc Nanotechnol 12(11), 85808588.
Oleshko, V.P., Gijbels, R. & Amelinckx, S. (2000). Electron microscopy and scanning microanalysis. In Encyclopedia of Analytical Chemistry, Meyers, R.A. (Ed.), pp. 90889120. Chichester: Wiley & Sons.
Oleshko, V.P. & Howe, J.M. (2007). In situ determination and imaging of physical properties of metastable and equilibrium precipitates using valence electron energy-loss spectroscopy and energy-filtering transmission electron microscopy. J Appl Phys 101, 054308.
Oleshko, V.P., Murayama, M. & Howe, J.M. (2002). Use of plasmon spectroscopy to evaluate the mechanical properties of materials at the nanoscale. Microsc Microanal 8(4), 350364.
Pines, D. (1956). Collective energy losses in solids. Rev Modern Phys 28(3), 184198.
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy. Berlin: Springer.
Reimer, I., Fromm, I., Hirsch, P., Plate, U. & Rennekamp, R. (1992). Combination of EELS modes and electron spectroscopic imaging and diffraction in an energy-filtering electron microscope. Ultramicroscopy 46, 335347.
Rösner, H., Boucharat, N., Markmann, J., Padmanabhan, K.A. & Wilde, G. (2009). In situ transmission electron microscopic observations of deformation and fracture processes in nanocrystalline palladium and Pd90Au10. Mater Sci Eng A 525, 102106.
Schaffer, B., Grogger, W. & Kothleitner, G. (2004). Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102, 2736.
Sigle, W., Krämer, S., Varshney, V., Zern, A., Eigenthaler, U. & Rühle, M. (2003). Plasmon energy mapping in energy-filtering transmission electron microscopy. Ultramicroscopy 96(3–4), 565571.
Wiesendanger, R. (2003). Scanning Probe Microscopy And Spectroscopy. Cambridge: Cambridge university Press.
Williams, D.B. & Carter, C.B. (2009). Transmission Electron Microscopy: A Textbook for Materials Science. Berlin: Springer.
Williams, D.B. & Edington, J.W. (1976). High resolution microanalysis in materials science using electron energy loss measurements. J Microsc 108(2), 113145.
Xu, S., Tay, B.K., Tan, H.S., Zhong, L. & Tu, Y.Q. (1996). Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy. J Appl Phys 79, 7234.

Keywords

Type Description Title
WORD
Supplementary materials

Matsko Supplementary Material
Figures

 Word (1.3 MB)
1.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed