Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-07T15:48:37.418Z Has data issue: false hasContentIssue false

Improving Accuracy and Precision of Strain Analysis by Energy-Filtered Nanobeam Electron Diffraction

Published online by Cambridge University Press:  18 January 2012

Angelika Hähnel*
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
Manfred Reiche
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
Oussama Moutanabbir
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
Horst Blumtritt
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
Holm Geisler
Affiliation:
Global Foundries Dresden Module One LLC & Co. KG, Wilschdorfer Landstraße 101, 01109 Dresden, Germany
Jan Höntschel
Affiliation:
Global Foundries Dresden Module One LLC & Co. KG, Wilschdorfer Landstraße 101, 01109 Dresden, Germany
Hans-Jürgen Engelmann
Affiliation:
Global Foundries Dresden Module One LLC & Co. KG, Wilschdorfer Landstraße 101, 01109 Dresden, Germany
*
Corresponding author. E-mail: ah@mpi-halle.mpg.de
Get access

Abstract

This article deals with uncertainty in the analysis of strain in silicon nanoscale structures and devices using nanobeam electron diffraction (NBED). Specimen and instrument related errors and instabilities and their effects on NBED analysis are addressed using a nanopatterned ultrathin strained silicon layer directly on oxide as a model system. We demonstrate that zero-loss filtering significantly improves the NBED precision by decreasing the diffuse background in the diffraction patterns. To minimize the systematic deviations the acquired data were verified through a reliability test and then calibrated. Furthermore, the effect of strain relaxation by specimen preparation using a FIB is estimated by comparing profiles, which were acquired by analyzing slices of strained structures in a 220-nm-thick region of the sample (invasive preparation) and the entire strained nanostructures, which are embedded in a thicker region of the same sample (noninvasive preparation). Together with the random deviation, the corresponding systematic shift results in a total deviation of ∼1 × 10−3 for NBED analyses, which is employed to estimate the measurement uncertainty in the thinner sample region. In contrast, the strain in the thick sample region is not affected by the preparation; the systematic shift reduces to a minimum, which improves the total deviation by ∼50%.

Type
Techniques Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baudot, S., Andrieu, F., Rieutord, F. & Eymery, J. (2009). Elastic relaxation in patterned and implanted strained silicon on insulator. J Appl Phys 105, 114302/110.CrossRefGoogle Scholar
Bayle-Guillemaud, P. & Thibault, J. (1997). Influence of imaging parameters and specimen thinning on strain measurements in Au/Ni MBE multilayers by HREM image processing. Microsc Microanal Microstruct 8, 125135.CrossRefGoogle Scholar
Béché, A., Rouviére, J.L., Clément, L. & Hartmann, J.M. (2009). Improved precision in strain measurement using nanobeam electron diffraction. Appl Phys Lett 95, 123114-1.CrossRefGoogle Scholar
Brunetti, G., Bouzy, E., Fundenberger, J.J., Morawiec, A. & Tidu, A. (2010). Determination of lattice parameters from multiple CBED patterns: A statistical approach. Ultramicroscopy 110, 269277.CrossRefGoogle ScholarPubMed
Chuvilin, A., Kaiser, U., De Robillard, Q. & Engelmann, H.J. (2005). On the origin of HOLZ lines splitting near interfaces: Multislice simulation of CBED patterns. J Electron Microsc 54, 515517.CrossRefGoogle ScholarPubMed
Cooper, D., Barnes, J.P., Hartmann, J.M., Béché, A. & Rouviére, J.L. (2009). Dark field electron holography for quantitative strain measurements with nanometer-scale spatial resolution. Appl Phys Lett 95, 053501/1–3.CrossRefGoogle Scholar
De Wolf, I., Senez, V., Balboni, R., Armigliato, A., Frabboni, S., Cedola, A. & Lagomarsino, S. (2003). Techniques for mechanical strain analysis in sub-micrometer structures: TEM/CBED, micro-Raman spectroscopy, X-ray-diffraction and modeling. Microelec Eng 70, 425435.CrossRefGoogle Scholar
Drosg, M. (2009a). Accuracy vs. precision. In Dealing with Uncertainties—A Guide to Error Analysis, Chapter 7.6.1, p. 149. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Drosg, M. (2009b). Pragmatic solution for measurements. In Dealing with Uncertainties—A Guide to Error Analysis, Chapter 9.3.2, pp. 183184. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Du, K. & Phillipp, F. (2005). On the accuracy of lattice-distortion analysis directly from high-resolution transmission electron micrographs. J Microsc 221, 6371.CrossRefGoogle Scholar
FEI. (2009). FEI-TrueCrystal Strain software™, version 2.02, component for the FEI-TEM Imaging & Analysis Offline software. Hillsboro, OR: FEI Company.Google Scholar
Floresca, H.C., Wang, J.G., Kim, M.J. & Smythe, J.A. (2008). Shallow trench isolation liners and their role in reducing lattice strains. Appl Phys Lett 93, 143116/1–3.CrossRefGoogle Scholar
Fultz, B. & Howe, J. (2008). Transmission Electron Microscopy and Diffractometry of Materials. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Galindo, P.L., Kret, S., Sanchez, A.M., Laval, J.Y., Yáñez, A., Pizarro, J., Guerrero, E., Ben, T. & Molina, S.I. (2007). The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 11861193.CrossRefGoogle ScholarPubMed
Grabe, M. (2002). Neue Formalismen zum Schätzen von Messunsicherheiten—Ein Beitrag zum Verknüpfen und Fortpflanzen von Messfehlern. Technisches Messen 3, 142150.CrossRefGoogle Scholar
Huang, J., Kim, M.J., Chidambaram, P.R., Irwin, R.P., Jones, P.J., Weijtmans, J.W., Koontz, E.M., Wang, Y.G., Tang, S. & Wise, R. (2006). Probing nanoscale local lattice strains in advanced Si complementary metal-oxide-semiconductor devices. Appl Phys Lett 89, 063114/1–3.Google Scholar
Huber, A.J., Ziegler, A., Köck, T. & Hillenbrand, R. (2009). Infrared nanoscopy of strained semiconductors. Nat Nanotechnol 4, 153157.CrossRefGoogle ScholarPubMed
Hüe, F., Hÿtch, M.J., Houdellier, F., Bender, H. & Claverie, A. (2009). Strain mapping of tensily strained silicon transistors with embedded Si1−yCy source and drain by dark-field holography. Appl Phys Lett 95, 073103.CrossRefGoogle Scholar
Hÿtch, M.J., Houdellier, F., Hüe, F. & Snoeck, E. (2008). Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 10861090.CrossRefGoogle ScholarPubMed
Hÿtch, M.J. & Plamann, T. (2001). Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy. Ultramicroscopy 87, 199212.CrossRefGoogle ScholarPubMed
Maiti, C.K., Chakrabarti, N.B. & Bera, L.K. (Eds.) (2007). Strained-Si Heterostructure Field Effect Devices. New York: Taylor Francis.CrossRefGoogle Scholar
Moutanabbir, O., Reiche, M., Hähnel, A., Erfurth, W., Gösele, U., Motohashi, M., Tarun, A., Hayazawa, N. & Kawata, S. (2010a). Nanoscale patterning induced strain redistribution in ultrathin strained Si layers on oxide. Nanotechnology 21, 134013/1–9.CrossRefGoogle ScholarPubMed
Moutanabbir, O., Reiche, M., Hähnel, A., Erfurth, W., Motohashi, M., Tarun, A., Hayazawa, N. & Kawata, S. (2010b). UV-Raman imaging of the in-plane strain in single ultrathin strained silicon-on-insulator patterned structure. Appl Phys Lett 96, 233105/1–3.CrossRefGoogle Scholar
Newton, M.C., Leake, S.J., Harder, R. & Robinson, I.K. (2010) Three-dimensional imaging of strain in a single ZnO nanorod. Nat Mater 9, 120124.CrossRefGoogle Scholar
Reiche, M., Himcinschi, C., Gösele, U., Christiansen, S., Mantl, S., Buca, D., Zhao, Q.T., Feste, S., Loo, R., Nguyen, D., Buchholtz, W., Wei, A., Horstmann, M., Feijoo, D. & Storck, P. (2007). Strained silicon-on-insulator—Fabrication and characterization. ECS Trans 6, 339344.CrossRefGoogle Scholar
Rouvière, J.L. & Sarigiannidou, E. (2005). Theoretical discussions on the geometrical phase analysis. Ultramicroscopy 106, 117.CrossRefGoogle ScholarPubMed
Shindo, D. & Oikawa, T. (2002). Evaluation of diffraction patterns with energy filtering. In Analytical Electron Microscopy for Materials Science, Chapter 3.6.3.2, pp. 7580. Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Usuda, K., Numata, T., Irisawa, T., Hirshita, N. & Takagi, S. (2005a). Strain characterization in SOI and strained-Si on SGOI MOSFETchannel using nano-beam electron diffraction (NBD). Mater Sci Eng B 124125, 143147.CrossRefGoogle Scholar
Usuda, K., Numata, T., Irisawa, T. & Takagi, S. (2005b). Strain evaluation of strained-Si layers on SiGe by the nano-beam electron diffraction (NBD) method. Mater Sci Semicond Proc 8, 155159.CrossRefGoogle Scholar
Wang, J.G., Kim, J., Kang, C.Y., Lee, B.H., Jammy, R., Choi, R. & Kim, M.J. (2008). Origin of tensile stress in the Si substrate induced by TiN/HfO2 metal gate/high-k dielectric gate stack. Appl Phys Lett 93, 161913/1–3.Google Scholar
Wei, A., Dünkel, S., Boschke, R., Kammler, T., Hempel, K., Rinderknecht, J., Horstmann, M., Cayrefourcq, I., Metral, F., Kennard, M. & Guiot, E. (2007). Integration challenges for advanced process-strained CMOS on biaxially-strained SOI (SSOI) substrates. ECS Trans 6, 1522.CrossRefGoogle Scholar