Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T04:31:02.938Z Has data issue: false hasContentIssue false

Implementing Transmission Electron Backscatter Diffraction for Atom Probe Tomography

Published online by Cambridge University Press:  22 June 2016

Katherine P. Rice*
Affiliation:
CAMECA Instruments Inc., 5500 Nobel Dr., Madison, WI 53711, USA
Yimeng Chen
Affiliation:
CAMECA Instruments Inc., 5500 Nobel Dr., Madison, WI 53711, USA
Ty J. Prosa
Affiliation:
CAMECA Instruments Inc., 5500 Nobel Dr., Madison, WI 53711, USA
David J. Larson
Affiliation:
CAMECA Instruments Inc., 5500 Nobel Dr., Madison, WI 53711, USA
*
*Corresponding author. Katherine.rice@ametek.com
Get access

Abstract

There are advantages to performing transmission electron backscattering diffraction (tEBSD) in conjunction with focused ion beam-based specimen preparation for atom probe tomography (APT). Although tEBSD allows users to identify the position and character of grain boundaries, which can then be combined with APT to provide full chemical and orientation characterization of grain boundaries, tEBSD can also provide imaging information that improves the APT specimen preparation process by insuring proper placement of the targeted grain boundary within an APT specimen. In this report we discuss sample tilt angles, ion beam milling energies, and other considerations to optimize Kikuchi diffraction pattern quality for the APT specimen geometry. Coordinated specimen preparation and analysis of a grain boundary in a Ni-based Inconel 600 alloy is used to illustrate the approach revealing a 50° misorientation and trace element segregation to the grain boundary.

Type
Technique and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babinsky, K., De Kloe, R., Clemens, H. & Primig, S. (2014). A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144, 918.Google Scholar
Babinsky, K., Knabl, W., Lorich, A., De Kloe, R., Clemens, H. & Primig, S. (2015). Grain boundary study of technically pure molybdenum by combining APT and TKD. Ultramicroscopy 159, 445451.Google Scholar
Chen, W., Chaturvedi, M.C., Richards, N.L. & McMahon, G. (1998). Grain boundary segregation of boron in INCONEL 718. Metall Mater Trans A 29(7), 19471954.Google Scholar
Henjered, A., Hellsing, M., Andrén, H.O. & Nordén, H. (1984). Atom-probe results support the skeleton model for WC-Co. J Phys Colloq 45(C9), C9-349C9-353.Google Scholar
Keller, R.R. & Geiss, R.H. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. Journal of Microscopy 245(3), 245251.Google Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79(1–4), 287293.Google Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P. & Kelly, T.F. (2013). Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer.Google Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T. & Michael, J. (2007). TEM sample preparation and FIB-induced damage. MRS Bull 32(5), 400407.Google Scholar
Michael, J. & Giannuzzi, L. (2007). Improved EBSD sample preparation via low energy Ga+FIB ion milling. Microsc Microanal 13(Suppl S02), 926927.Google Scholar
Michael, J.R. (2011). Focused ion beam induced microstructural alterations: Texture development, grain growth, and intermetallic formation. Microsc Microanal 17(3), 386397.Google Scholar
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13(6), 428436.Google Scholar
Miller, M.K. & Smith, G.D.W. (1989). Atom Probe Microanalysis: Principles and Applications to Materials Problems. Pittsburgh, PA: Materials Research Society.Google Scholar
Rice, K.P., Keller, R.R. & Stoykovich, M.P. (2014). Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope. J Microsc 254(3), 129136.Google Scholar
Special Metals Corp. Inconel alloy 600 Web. 2008.qxd – Inconel alloy 600.pdf. (n.d.). Available at http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf (retrieved December 16, 2015).Google Scholar
Stiller, K. (1991). Investigations of grain boundary microchemistry in nickel base superalloys. Surf Sci 246(1–3), 225230.Google Scholar
Thompson, K., Gorman, B., Larson, D., van Leer, B. & Hong, L. (2006). Minimization of Ga induced FIB damage using low energy clean-up. Microsc Microanal 12(Suppl S02), 17361737.Google Scholar
Thompson, K., Larson, D.J. & Ulfig, R.M. (2005). Pre-sharpened and flat-top microtip coupons: A quantitative comparison for atom-probe analysis studies. Microsc Microanal 11(Suppl S02), 882883.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3), 131139.Google Scholar
Walsh, J.M. & Rear, B.H. (1975). Direct evidence for boron segregation to grain boundaries in a nickel-base alloy by secondary ion mass spectrometry. Metall Trans A 6(1), 226229.Google Scholar
Waugh, A.R., Payne, S., Worrall, G.M. & Smith, G.D.W. (1984). In situ ion milling of field ion specimens using a liquid metal ion source. J Phys Colloq 45(C9), C9-207C9-209.Google Scholar
Waugh, A.R. & Southon, M.J. (1979). Surface analysis and grain-boundary segregation measurements using atom-probe techniques. Surf Sci 89(1), 718724.Google Scholar
Wright, S.I. & Nowell, M.M. (2006). EBSD image quality mapping. Microsc Microanal 12(1), 7284.Google Scholar