Skip to main content Accessibility help
×
Home

High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the Transmission Electron Microscope

  • Mihaela Tanase (a1) (a2), Jonathan Winterstein (a1), Renu Sharma (a1), Vladimir Aksyuk (a1), Glenn Holland (a1) and James A. Liddle (a1)...

Abstract

We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid-layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200×200 µm.

Copyright

Corresponding author

* Corresponding author. liddle@nist.gov

References

Hide All
Abrams, I.M. & Mcbain, J.W. (1944). A closed cell for electron microscopy. J Appl Phys 15(8), 607609.
Baker, R.T.K. & Harris, P.S. (1972). Controlled atmosphere electron microscopy. J Phys E Sci Instrum 5(8), 793.
Bartholomew, C.H. & Farrauto, R.J. (2011). Fundamentals of Industrial Catalytic Processes . Hoboken, NJ: Wiley.
Bell, A.T. (2003). The impact of nanoscience on heterogeneous catalysis. Science 299(5613), 16881691.
Burge, R.E. & Misell, D.L. (1968). Electron energy loss spectra for evaporated carbon films. Philos Mag 18(152), 251259.
Cavé, L., Al, T., Loomer, D., Cogswell, S. & Weaver, L. (2006). A STEM/EELS method for mapping iron valence ratios in oxide minerals. Micron 37(4), 301309.
Chen, Q., Smith, J.M., Park, J., Kim, K., Ho, D., Rasool, H.I., Zettl, A. & Alivisatos, A.P. (2013). 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett 13(9), 45564561.
Cosslett, V.E. (1969). Energy loss and chromatic aberration in electron microscopy. Z Angew Physik 27, 138141.
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108(9), 993998.
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci U S A 106, 21592164.
de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D.B. & Drouin, D. (2010). Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110(9), 11141119.
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6(11), 695704.
Dukes, M.J., Jacobs, B.W., Morgan, D.G., Hegde, H. & Kelly, D.F. (2013). Visualizing nanoparticle mobility in liquid at atomic resolution. Chem Commun 49(29), 30073009.
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. Berlin and New York: Springer.
Egerton, R.F., Wang, F., Malac, M., Moreno, M.S. & Hofer, F. (2008). Fourier-ratio deconvolution and its Bayesian equivalent. Micron 39(6), 642647.
Gai, P. (2002). Developments in in situ environmental cell high-resolution electron microscopy and applications to catalysis. Top Catal 21(4), 161173.
Grogan, J.M. & Bau, H.H. (2010). The nanoaquarium: A platform for in situ transmission electron microscopy in liquid media. J Microelectromech Syst 19(4), 885894.
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslan, I. & Wang, C.-M. (2013). Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett 13(12), 61066112.
Holtz, M.E., Yu, Y., Gao, J., Abruña, H.D. & Muller, D.A. (2013). In situ electron energy-loss spectroscopy in liquids. Microsc Microanal 19(4), 10271035.
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. & Furuya, K. (2008). Thickness measurements with electron energy loss spectroscopy. Microsc Res Tech 71(8), 626631.
Jeangros, Q., Faes, A., Wagner, J.B., Hansen, T.W., Aschauer, U., Van herle, J., Hessler-Wyser, A. & Dunin-Borkowski, R.E. (2010). In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscope. Acta Mater 58(14), 45784589.
Jensen, E., Burrows, A. & Mølhave, K. (2014). Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc Microanal 20(2), 445451.
Jungjohann, K.L., Evans, J.E., Aguiar, J.A., Arslan, I. & Browning, N.D. (2012). Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc Microanal 18(3), 621627.
Klein, K., Anderson, I. & de Jonge, N. (2011 a). Transmission electron microscopy with a liquid flow cell. J Microsc 242(2), 117123.
Klein, K., de Jonge, N. & Anderson, I. (2011 b). Energy-loss characteristics for EFTEM imaging with a liquid flow cell. Microsc Microanal 17(Suppl 2), 780781.
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F. & De Yoreo, J.J. (2012). Direction-specific interactions control crystal growth by oriented attachment. Science 336(6084), 10141018.
Liao, H.-G., Zherebetskyy, D., Xin, H., Czarnik, C., Ercius, P., Elmlund, H., Pan, M., Wang, L.-W. & Zheng, H. (2014). Facet development during platinum nanocube growth. Science 345(6199), 916919.
Liddle, J.A., Huggins, H.A., Mulgrew, P., Harriott, L.R., Wade, H.H. & Bolan, K. (1994). Fracture strength of thin ceramic membranes. MRS Online Proceedings Library 338.
Liu, K.-L., Wu, C.-C., Huang, Y.-J., Peng, H.-L., Chang, H.-Y., Chang, P., Hsu, L. & Yew, T.-R. (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8(11), 19151921.
Maier-Schneider, D., Maibach, J. & Obermeier, E. (1995). A new analytical solution for the load-deflection of square membranes. J Microelectromech Syst 4(4), 238241.
Marton, L. (1935). La microscopie electronique des objets biologiques. Bull Acad Roy Belgique 21, 553560.
Mele, L., Santagata, F., Pandraud, G., Morana, B., Tichelaar, F.D., Creemer, J.F. & Sarro, P.M. (2010). Wafer-level assembly and sealing of a MEMS nanoreactor for in situ microscopy. J Micromech Microeng 20(8), 085040.
Menon, N.K. & Krivanek, O.L. (2002). Synthesis of electron energy loss spectra for the quantification of detection limits. Microsc Microanal 8(3), 203215.
O’Keefe, M., Allard, L. & Blom, D. (2008). Young’s fringes are not evidence of HRTEM resolution. Microsc Microanal 14(Suppl 2), 834835.
O’Keefe, M., Allard, L. & Blom, D. (2010). Defining HRTEM resolution: Image resolutions and microscope limits. Microsc Microanal 16(Suppl 2), 766767.
Peña, F.d.l., Burdet, P., Sarahan, M., Nord, M., Ostasevicius, T., Taillon, J., Eljarrat, A., Mazzucco, S., Fauske, V.T., Donval, G., Zagonel, L.F., Walls, M. & Iyengar, I. (2015). Hyperspy 0.8.
Radisic, A., Ross, F.M. & Searson, P.C. (2006 a). In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B 110(15), 78627868.
Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C. & Ross, F.M. (2006 b). Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6(2), 238242.
Ramachandra, R., Demers, H. & de Jonge, N. (2013). The influence of the sample thickness on the lateral and axial resolution of aberration-corrected scanning transmission electron microscopy. Microsc Microanal 19(1), 93101.
Reimer, L. (1997). Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. New York: Springer-Verlag.
Riegler, K. & Kothleitner, G. (2010). EELS detection limits revisited: Ruby—a case study. Ultramicroscopy 110(8), 10041013.
Ross, F.M. (2010). Controlling nanowire structures through real time growth studies. Rep Prog Phys 73(11), 114501.
Sharma, R. (2001). Design and applications of environmental cell transmission electron microscope for in situ observations of gas–solid reactions. Microsc Microanal 7(6), 494506.
Sharma, R., Crozier, P.A., Kang, Z.C. & Eyring, L. (2004). Observation of dynamic nanostructural and nanochemical changes in ceria-based catalysts during in-situ reduction. Philos Mag 84(25–26), 27312747.
Sharma, R., Rez, P., Brown, M., Du, G. & Treacy, M.M.J. (2007). Dynamic observations of the effect of pressure and temperature conditions on the selective synthesis of carbon nanotubes. Nanotechnology 18(12), 125602.
Smeets, P.J.M., Cho, K.R., Kempen, R.G.E., Sommerdijk, N.A.J.M. & De Yoreo, J.J. (2015). Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat Mater 14(4), 394399.
Swift, J.A. & Brown, A.C. (1970). An environmental cell for the examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy. J Phys E Sci Instrum 3(11), 924.
Vendelbo, S.B., Elkjær, C.F., Falsig, H., Puspitasari, I., Dona, P., Mele, L., Morana, B., Nelissen, B.J., van Rijn, R., Creemer, J.F., Kooyman, P.J. & Helveg, S. (2014). Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat Mater (advance online publication). Nat Mater 13(9), 884890.
Wang, C.-M., Liao, H.-G. & Ross, F.M. (2015). Observation of materials processes in liquids by electron microscopy. MRS Bull 40(1), 4652.
Wang, C., Qiao, Q., Shokuhfar, T. & Klie, R.F. (2014). High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv Mater 26(21), 34103414.
Wang, F., Egerton, R. & Malac, M. (2009 a). Fourier-ratio deconvolution techniques for electron energy-loss spectroscopy (EELS). Ultramicroscopy 109(10), 12451249.
Wang, R., Crozier, P.A. & Sharma, R. (2009 b). Structural transformation in ceria nanoparticles during redox processes. J Phys Chem C 113(14), 57005704.
Welch, D.A., Faller, R., Evans, J.E. & Browning, N.D. (2013). Simulating realistic imaging conditions for in situ liquid microscopy. Ultramicroscopy 135, 3642.
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8), 532536.
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077), 6164.
Zheng, H., Smith, R.K., Jun, Y.-w., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932), 13091312.

Keywords

Type Description Title
VIDEO
Supplementary materials

Tanase Supplementary Material
Tanase Supplementary Movie

 Video (6.0 MB)
6.0 MB
WORD
Supplementary materials

Tanase Supplementary Material
Table S1

 Word (12 KB)
12 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed