Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T06:40:59.617Z Has data issue: false hasContentIssue false

Hardened AISI 4140 Steel Subjected to Hydrogen

Published online by Cambridge University Press:  30 July 2021

Noé López Perrusquia
Affiliation:
Universidad Politecnica del Valle de México, Tultitlan, Distrito Federal, Mexico
Marco Antonio Doñu Ruiz
Affiliation:
Universidad Politecnica del Valle de México, Tultitlan, Distrito Federal, Mexico
Victor Hugo Olmos Domínguez
Affiliation:
Universidad Tecnológica de México Campus Atizapán, ESTADO DE MEXICO, Distrito Federal, Mexico
Jorge Victor Cortes Suarez
Affiliation:
Universidad Autónoma Metropolitana Unidad Azcapotzalco, México, Distrito Federal, Mexico
Jose Luis Velázquez Mendoza
Affiliation:
Universidad Autónoma Metropolitana Unidad Azcapotzalco, México, Distrito Federal, Mexico
David Sanchez Huitron
Affiliation:
Universidad Politécnica del Valle de México, Tultitlan, Distrito Federal, Mexico

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Evaluation of Materials for Nuclear Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Gangloff, R.P., Somerday, B.P.,Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Volume 1: The Problem, its Charaterization and Effects on Particular Alloy ClassesWoodhead Publishing Limited, Cambridge, UK (2012)Google Scholar
Fritzsche, H., Klose, F., Rehm, C., Tun, Z.. Wolff, M., and Hjörvarsson, B., Neutron Reflectometry in “Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials”, Fritzsche, H., Huot, J., Fruchart, D. (Editors), Springer (2016).Google Scholar
Chuang, J.H. et al. Fatig. 20, (7) (1998), P.531-536. doi.org/10.1016/S0142-1123(98)00019-X.CrossRefGoogle Scholar
Dwivedi, Sandeep Kumar. et al. Inter. Jour, Hydr. Ener. 43 (46) (2018) p. 21603-21616. doi.org/10.1016/j.ijhydene.2018.09.201.CrossRefGoogle Scholar
López Perrusquia, N.. et al. Surf. Coat. Technol. 377 (2019), p. 124880. doi.org/10.1016/j.surfcoat.2019.08.009Google Scholar
Velázquez I, López. et al. Microscopy and Microanalysis, 25(S2) (2019), p. 1602-1603. doi:10.1017/S1431927619008742Google Scholar
ASTM E399 - 20a Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic MaterialGoogle Scholar
Carvalho, J.P.D.. et al. Int. J. Hydrog. Energy 42 (2017), p. 681688. doi.org/10.1016/j.ijhydene.2016.10.127.Google Scholar
Annual book of ASTM standards. ASTM E18 standard test method for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, Vol. 03.01. ASTM Int, PA; 2005.Google Scholar
Hafeez, M.A. et al. Microstruct. Anal. 8 (2019), p. 479487. doi.org/10.1007/s13632-019-00556-xCrossRefGoogle Scholar
Zafra, A.. et al. Journal of Pressure Vessels and Piping. 171 (2019), p. 34-50. doi.org/10.1016/j.ijpvp.2019.01.020Google Scholar
Colombo, Chiara. et al. Theor Appl Fract Mec. 110 (2020), p. 102810. doi.org/10.1016/j.tafmec.2020.102810Google Scholar
Zheng, L. et al. Met. Mater. Int. 19 (2013), p.13731376 . doi.org/10.1007/s12540-013-6034-7Google Scholar