Skip to main content Accessibility help
×
Home

Fabrication of Atom Probe Tomography Specimens from Nanoparticles Using a Fusible Bi–In–Sn Alloy as an Embedding Medium

  • Se-Ho Kim (a1), Ji Yeong Lee (a2), Jae-Pyoung Ahn (a2) and Pyuck-Pa Choi (a1)

Abstract

We propose a new method for preparing atom probe tomography specimens from nanoparticles using a fusible bismuth–indium–tin alloy as an embedding medium. Iron nanoparticles synthesized by the sodium borohydride reduction method were chosen as a model system. The as-synthesized iron nanoparticles were embedded within the fusible alloy using focused ion beam milling and ion-milled to needle-shaped atom probe specimens under cryogenic conditions. An atom probe analysis revealed boron atoms in a detected iron nanoparticle, indicating that boron from the sodium borohydride reductant was incorporated into the nanoparticle during its synthesis.

Copyright

Corresponding author

*Author for correspondence: Pyuck-Pa Choi, E-mail: p.choi@kaist.ac.kr

References

Hide All
Berlin, J (2011). Analysis of boron with energy dispersive spectrometry. Imaging Microsc 13, 1921.
Cento, C, Gislon, P and Prosini, PP (2009). Hydrogen generation by hydrolysis of NaBH4. Int J Hydrogen Energy 34, 45514554.
Demirci, UB and Miele, P (2010). Cobalt in NaBH4 hydrolysis. Phys Chem Chem Phys 12, 14651. http://xlink.rsc.org/?DOI=c0cp00295j.
Devaraj, A, Colby, R, Vurpillot, F and Thevuthasan, S (2014). Understanding atom probe tomography of oxide-supported metal nanoparticles by correlation with atomic-resolution electron microscopy and field evaporation simulation. J Phys Chem Lett 5, 13611367.
de Resende, VG, De Grave, E, da Costa, GM and Janssens, J (2007). Influence of the borohydride concentration on the composition of the amorphous Fe–B alloy produced by chemical reduction of synthetic, nano-sized iron-oxide particles. Part I: Hematite. J Alloys Compd 440, 236247.
Eley, C, Li, T, Liao, F, Fairclough, SM, Smith, JM, Smith, G and Tsang, SCE (2014). Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. Angew Chem: Int Ed 53, 78387842.
Felfer, P, Benndorf, P, Masters, A, Maschmeyer, T and Cairney, JM (2014). Revealing the distribution of the atoms within individual bimetallic catalyst nanoparticles. Angew Chem: Int Ed 53, 1119011193.
Felfer, P, Li, T, Eder, K, Galinski, H, Magyar, AP, Bell, DC, Smith, GDW, Kruse, N, Ringer, SP and Cairney, JM (2015). New approaches to nanoparticle sample fabrication for atom probe tomography. Ultramicroscopy 159, 413419.
Folcke, E, Lardé, R, Le Breton, JM, Gruber, M, Vurpillot, F, Shield, JE, Rui, X and Patterson, MM (2012). Laser-assisted atom probe tomography investigation of magnetic FePt nanoclusters: First experiments. J Alloys Compd 517, 4044. http://dx.doi.org/10.1016/j.jallcom.2011.11.134.
Fu, F, Dionysiou, DD and Liu, H (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater 267, 194205.
Galiana, B, Oprea, B, Huttel, Y and Ballesteros, C (2014). Synthesis and characterization of Fe–B nanoparticles for potential magnetic applications. J Mater Sci: Mater Electron 25, 659663.
Gault, B (2016). A brief overview of atom probe tomography research. Appl Microsc 46, 117126. http://www.appmicro.org/journal/view.html?doi=10.9729/AM.2016.46.3.117.
Glavee, GN, Klabunde, KJ, Sorensen, CM and Hadjipanayis, GC (1995). Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 34, 2835.
Gnaser, H (2014). Atom probe tomography of nanostructures. Surf Interface Anal 46, 383388.
Heck, PR, Stadermann, FJ, Isheim, D, Auciello, O, Daulton, TL, Davis, AM, Elam, JW, Floss, C, Hiller, J, Larson, DJ, Lewis, JB, Mane, A, Pellin, MJ, Savina, MR, Seidman, DN and Stephan, T (2014). Atom-probe analyses of nanodiamonds from Allende. Meteorit Planet Sci 49, 453467.
Huber, DL (2005). Synthesis, properties, and applications of iron nanoparticles. Small 1, 482501.
Hyeon, T, Lee, SS, Park, J, Chung, Y and Na, HB (2001). Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123, 1279812801.
Kim, S-H and Choi, P-P (2017). Enhanced Congo red dye removal from aqueous solutions using iron nanoparticles: Adsorption, kinetics, and equilibrium studies. Dalton Trans 46, 1547015479. http://dx.doi.org/10.1039/C7DT02076G.
Kim, S-H, Kang, PW, Park, OO, Seol, J-B, Ahn, J-P, Lee, JY and Choi, P-P (2018). A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT). Ultramicroscopy 190, 3038. http://linkinghub.elsevier.com/retrieve/pii/S0304399117304965.
Kuchibhatla, SVNT, Shutthanandan, V, Prosa, TJ, Adusumilli, P, Arey, B, Buxbaum, A, Wang, YC, Tessner, T, Ulfig, R, Wang, CM and Thevuthasan, S (2012). Three-dimensional chemical imaging of embedded nanoparticles using atom probe tomography. Nanotechnology 23, 215704. http://stacks.iop.org/0957-4484/23/i=21/a=215704?key=crossref.48c33fd57ee74bada321684fa3bb082f.
Larson, DJ, Giddings, AD, Wu, Y, Verheijen, MA, Prosa, TJ, Roozeboom, F, Rice, KP, Kessels, WMM, Geiser, BP and Kelly, TF (2015). Encapsulation method for atom probe tomography analysis of nanoparticles. Ultramicroscopy 159, 420426.
Larson, D, Prosa, T and Kelly, T (2013). Local Electrode Atom Probe Tomography—A user's guide. http://link.springer.com/content/pdf/10.1007/978-1-4614-8721-0.pdf.
Lee, JK, Ann, HH, Yi, Y, Lee, KW, Uhm, S and Lee, J (2011). A stable Ni–B catalyst in hydrogen generation via NaBH4 hydrolysis. Catal Commun 16, 120123.
Lewis, JB, Isheim, D, Floss, C, Daulton, TL and Seidman, DN (2016). Analysis of Allende nanodiamond residue by correlated transmission electron microscopy and atom-probe tomography. Lunar Planet Sci Conf 47, 2248.
Li, H, Wu, Y, Luo, H, Wang, M and Xu, Y (2003). Liquid phase hydrogenation of acetonitrile to ethylamine over the Co–B amorphous alloy catalyst. J Catal 214, 1525.
Li, T, Bagot, PAJ, Christian, E, Theobald, BRC, Sharman, JDB, Ozkaya, D, Moody, MP, Tsang, SCE and Smith, GDW (2014). Atomic imaging of carbon-supported Pt, Pt/Co, and Ir@Pt nanocatalysts by atom-probe tomography. ACS Catal 4, 695702.
Li, T, Bagot, PAJ, Marquis, EA, Tsang, SCE and Smith, GDW (2012). Characterization of oxidation and reduction of Pt–Ru and Pt–Rh–Ru alloys by atom probe tomography and comparison with Pt–Rh. J Phys Chem C 116, 1763317640.
Li, X, Elliott, DW and Zhang, W (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Crit Rev Solid State Mater Sci 31, 111122. http://www.tandfonline.com/doi/abs/10.1080/10408430601057611.
Linderoth, S, Mrup, S and Bentzon, MD (1990). Influence of pH on the composition and structure of Fe–Co–B alloy particles prepared by borohydride reduction in aqueous solutions. J Magn Magn Mater 83, 457459.
Miller, MK and Forbes, RG (2009). Atom probe tomography. Mater Charact 60, 461469. http://dx.doi.org/10.1016/j.matchar.2009.02.007.
Miller, MK and Kenik, EA (2004). Atom probe tomography: A technique for nanoscale characterization. Microsc Microanal 10, 336341.
Miller, MK, Russell, KF, Thompson, K, Alvis, R and Larson, DJ (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.
Ocon, JD, Tuan, TN, Yi, Y, De Leon, RL, Lee, JK and Lee, J (2013). Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe–B nanoparticles. J Power Sources 243, 444450.
Okamoto, H (2010). Desk Handbook: Phase Diagram for Binary Alloys, 2nd ed. https://www.asminternational.org/home/-/journal_content/56/10192/57751G/PUBLICATION/.
Oprea, B, Martínez, L, Román, E, Espinosa, A, Ruano, M, Llamosa, D, García-Hernández, M, Ballesteros, C and Huttel, Y (2014). Growth and characterization of FeB nanoparticles for potential application as magnetic resonance imaging contrast agent. Mater Res Express 1, 025008.
Perea, DE, Arslan, I, Liu, J, Ristanović, Z, Kovarik, L, Arey, BW, Lercher, JA, Bare, SR and Weckhuysen, BM (2015). Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat Commun 6, 7589. http://www.nature.com/doifinder/10.1038/ncomms8589.
Perea, DE, Liu, J, Bartrand, J, Dicken, Q, Thevuthasan, ST, Browning, ND and Evans, JE (2016). Atom probe tomographic mapping directly reveals the atomic distribution of phosphorus in resin embedded ferritin. Sci Rep 6, 22321. http://www.nature.com/articles/srep22321.
Shahwan, T, Abu Sirriah, S, Nairat, M, Boyaci, E, Eroĝlu, AE, Scott, TB and Hallam, KR (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172, 258266.
Shen, J, Li, Z and Chen, Y (1994). Preparation of Fe-B ultrafine amorphous alloy particles by the reaction of ferric chloride and potassium borohydride in aqueous solution. J Mater Sci Lett 13, 12081210.
Shi, LN, Zhang, X and Chen, ZL (2011). Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45, 886892.
Sun, Y-P, Li, X, Cao, J, Zhang, W and Wang, HP (2006). Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120, 4756. http://linkinghub.elsevier.com/retrieve/pii/S000186860600025X.
Tedsree, K, Li, T, Jones, S, Chan, CWA, Yu, KMK, Bagot, PAJ, Marquis, EA, Smith, GDW and Tsang, SCE (2011). Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nat Nanotechnol 6, 302307. http://www.nature.com/doifinder/10.1038/nnano.2011.42.
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF and Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.
Vilayurganapathy, S, Devaraj, A, Colby, R, Pandey, A, Varga, T, Shutthanandan, V, Manandhar, S, El-Khoury, PZ, Kayani, A, Hess, WP and Thevuthasan, S (2013). Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO. Nanotechnology 24, 095707. http://iopscience.iop.org/article/10.1088/0957-4484/24/9/095707.
Walter, JC, Zurawski, A, Montgomery, D, Thornburg, M and Revankar, S (2008). Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. J Power Sources 179, 335339.
Wang, CB and Zhang, WX (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31, 21542156.
Wells, S, Charles, SW, Mørup, S, Linderoth, S, Van Wonterghem, J, Larsen, J and Madsen, MB (1989). A study of Fe–B and Fe–Co–B alloy particles produced by reduction with borohydride. J Phys: Condens Matter 1, 81998208.
Wu, C, Bai, Y and Wu, F (2008). Fast hydrogen generation from NaBH4 solution accelerated by ferric catalysts. Mater Lett 62, 42424244.
Xiang, Y, Chitry, V, Liddicoat, P, Felfer, P, Cairney, J, Ringer, S and Kruse, N (2013). Long-chain terminal alcohols through catalytic CO hydrogenation. J Am Chem Soc 135, 71147117.
Yu, KMK, Tong, W, West, A, Cheung, K, Li, T, Smith, G, Guo, Y and Tsang, SCE (2012). Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat Commun 3, 1230. http://www.nature.com/doifinder/10.1038/ncomms2242.
Yuvakkumar, R, Elango, V, Rajendran, V and Kannan, N (2011). Preparation and characterization of zero valent iron nanoparticles. Dig J Nanomater Biostruct 6, 17711776.
Zhang, D, Wei, S, Kaila, C, Su, X, Wu, J, Karki, AB, Young, DP and Guo, Z (2010). Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2, 917. http://xlink.rsc.org/?DOI=c0nr00065e.
Zhang, WX (2003). Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5, 323332.
Zysler, RD, Ramos, CA, Romero, H and Ortega, A (2001). Chemical synthesis and characterization of amorphous Fe-Ni-B magnetic nanoparticles. J Mater Sci 36, 22912294.

Keywords

Fabrication of Atom Probe Tomography Specimens from Nanoparticles Using a Fusible Bi–In–Sn Alloy as an Embedding Medium

  • Se-Ho Kim (a1), Ji Yeong Lee (a2), Jae-Pyoung Ahn (a2) and Pyuck-Pa Choi (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed