Skip to main content Accessibility help
×
Home

Evaluation of Nanomechanical Properties of Tomato Root by Atomic Force Microscopy

  • D. E. Nicolás-Álvarez (a1), J. A. Andraca-Adame (a2), J. J. Chanona-Pérez (a1), J. V. Méndez-Méndez (a3), S. Cárdenas-Pérez (a4) and A. Rodríguez-Pulido (a5)...

Abstract

Here, different tissue surfaces of tomato root were characterized employing atomic force microscopy on day 7 and day 21 of growth through Young's modulus and plasticity index. These parameters provide quantitative information regarding the mechanical behavior of the tomato root under fresh conditions in different locations of the cross-section of root [cell surface of the epidermis, parenchyma (Pa), and vascular bundles (Vb)]. The results show that the mechanical parameters depend on the indented region, tissue type, and growth time. Thereby, the stiffness increases in the cell surface of epidermal tissue with increasing growth time (from 9.19 ± 0.68 to 13.90 ± 1.68 MPa) and the cell surface of Pa tissue displays the opposite behavior (from 1.74 ± 0.49 to 0.48 ± 0.55); the stiffness of cell surfaces of Vb tissue changes from 10.60 ± 0.58 to 6.37 ± 0.53 MPa, all cases showed a statistical difference (p < 0.05). Viscoelastic behavior dominates the mechanical forces in the tomato root. The current study is a contribution to a better understanding of the cell mechanics behavior of different tomato root tissues during growth.

Copyright

Corresponding author

*Author for correspondence: J.J. Chanona-Pérez, E-mail: jorge_chanona@hotmail.com

References

Hide All
Cárdenas-Pérez, S, Chanona-Pérez, JJ, Güemes-Vera, N, Cybulska, J, Szymanska-Chargot, M, Chylinska, M & Zdunek, A (2018). Structural, mechanical and enzymatic study of pectin and cellulose during mango ripening. Carbohydr Polym 196, 313321.
Cárdenas-Pérez, S, Chanona-Pérez, JJ, Méndez-Méndez, JV, Arzate-Vázquez, I, Hernández-Varela, JD & Güemes Vera, N (2019). Recent advances in atomic force microscopy for assessing the nanomechanical properties of food materials. Trends in Food Science & Technology 87, 5972.
Cárdenas-Pérez, S, Chanona-Pérez, JJ, Méndez-Méndez, JV, Calderón-Domínguez, G, López-Santiago, R & Árzate-Vazquez, I (2016). Nanoindentation study on apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innovative Food Sci Emerging Technol 34, 234242.
Cárdenas-Pérez, S, Méndez-Méndez, JV, Chanona-Pérez, JJ, Zdunek, A, Güemes-Vera, N, Calderón-Domínguez, G & Rodríguez-González, F (2017). Prediction of the nanomechanical properties of apple tissue during its ripening process from its firmness, color and microstructural parameters. Innovative Food Sci Emerging Technol 39, 7987.
Esau, K (2006). Anatomía Vegetal. Meristemos, células y tejidos de las plantas: su estructura, función y desarrollo. OMEGA. 3 edición. 614 pp.
FAO (2016). World food and agriculture. http://www.fao.org (accessed 18 March 2018).
Fernandes, AN, Chen, X, Scotchford, A, Walker, J, Wells, DM, Clive, JR & Everitt, NM (2012). Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: an atomic force microscopy study. Phys Rev E 85, 021916, 1-021916-8.
Formosa-Dague, C, Duval, RE & Dague, E (2018). Cell biology of microbes and pharmacology of antimicrobial drugs explored by atomic force microscopy. Semin Cell Dev Biol 73, 165176.
Geitmann, A & Ortega, J (2009). Mechanics and modelling of plant cell growth. Trends Plant Sci 14, 467468.
Hayot, C, Forouzesh, E, Goel, A, Avramova, Z & Turner, J (2012). Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. J. Exp Bot 63(7), 25252540.
Kasas, S, Stupar, P & Dietler, G (2018). AFM contribution to unveiling pro- and eukaryotic cell mechanical properties. Semin Cell Dev Biol 73, 177187.
Klymenko, O, Witowska-Zuber, J, Lekka, M & Kwiatek, WM (2009). Energy dissipation in the AFM elasticity measurements. Acta Phys Pol A 115, 548551.
Korn, R (2002). Biological hierarchies, their birth, death and evolution by natural selection. Biol Philos 17, 199221.
López, FB & Barday, GF (2017). Plant anatomy and physiology. In Pharmacognosy, McLaughlin, M (ed.), pp 4560. Chennai, India: Elsevier.
Mebatsion, HK, Verboven, P & Ho, QT (2008). Modeling fruit (micro) structures why and how? Trends Food Sci Technol 19, 5966.
Milani, P, Gholamirad, M, Trass, J, Arnéodo, A, Boudaoud, A, Argoul, F & Hamant, O (2011). In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67, 11161123.
Nicolás-Álvarez, DE, Mateo-Cid, LE, Mendoza-González, AC, Gutiérrez-Ladrón de Guevara, M & Reyes-Chaparro, A (2014). Utilization of seaweed Sargassum liebmanii extract as a stimulant of germination of Pachyrhizus erosus. JCBPSC: E Plant Biotechnol 4, 5661.
Niklas, KJ (2006). Plant Biomechanics: An Engineering Approach to Plant Form and Function. London: University of Chicago Press.
Notbohm, J, Poon, B & Ravichandran, G (2011). Analysis of nanoindentation of soft materials with an atomic force microscope. J Mater Res 27, 229237.
Paucelle, A, Braybrook, SA, Guillou, L, Bron, E, Kuhlemeier, E & Hofte, H (2011). Pectin-induced changes in cell wall mechanics underline organ initiation in Arabidopsis. Curr Biol 21, 17201726.
Radotíc, K, Rouduit, C, Simonovíc, J, Hornitschek, P, Fankhauser, C, Mutavdzic, D, Steinbach, G, Dietler, G & Kasas, S (2012). Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. Biophys J 103, 386394.
Schreiber, L (2010). Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15, 546553.
Vergani, C, Schwarz, M, Soldati, M, Corda, A, Giadrossih, F, Chiaradia, EA, Moraando, P & Bassanelli, C (2016). Root reinforcement dynamics in subalpine spruce forest following timber harvest: A case of study in Canton Schwyz, Switzerland. Catena 143, 275288.
Volinsky, AA & Gerberich, WW (2003). Nanoindentation techniques for assessing mechanical reliability at nanoscale. Microelectron Eng 69, 519527.
Wolff, J (1976). The Law of Bone Remodeling. Berlin Heidelberg, New York: Springer-Verlag.
Xi, X, Kim, SH & Tittmann, B (2015). Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment. J Appl Phys 117, 19.
Zdunek, A & Kurenda, A (2013). Determination of the elastic properties of tomato fruit cells with an atomic force microscope. Sensors 13, 12175–11219.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed