Skip to main content Accessibility help
×
Home

Elemental Distribution in CrNbTaTiW-C High Entropy Alloy Thin Films

  • Deodatta Shinde (a1), Stefan Fritze (a2), Mattias Thuvander (a1), Paulius Malinovskis (a2), Lars Riekehr (a2), Ulf Jansson (a2) and Krystyna Stiller (a1)...

Abstract

The microstructure and distribution of the elements have been studied in thin films of a near-equimolar CrNbTaTiW high entropy alloy (HEA) and films with 8 at.% carbon added to the alloy. The films were deposited by magnetron sputtering at 300°C. X-ray diffraction shows that the near-equimolar metallic film crystallizes in a single-phase body centered cubic (bcc) structure with a strong (110) texture. However, more detailed analyses with transmission electron microscopy (TEM) and atom probe tomography (APT) show a strong segregation of Ti to the grain boundaries forming a very thin Ti–Cr rich interfacial layer. The effect can be explained by the large negative formation enthalpy of Ti–Cr compounds and shows that CrNbTaTiW is not a true HEA at lower temperatures. The addition of 8 at.% carbon leads to the formation of an amorphous structure, which can be explained by the limited solubility of carbon in bcc alloys. TEM energy-dispersive X-ray spectroscopy indicated that all metallic elements are randomly distributed in the film. The APT investigation, however, revealed that carbide-like clusters are present in the amorphous film.

Copyright

Corresponding author

*Authors for correspondence: Deodatta Shinde, E-mail: deodatta.shinde@chalmers.se; Mattias Thuvander, E-mail: mattias.thuvander@chalmers.se

References

Hide All
Basu, I, Ocelík, V & De Hosson, JTM (2018). Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys. Acta Mater 150, 104116.
Boll, T, Thuvander, M, Koch, S, Wagner, JN, Nedfors, N, Jansson, U & Stiller, K (2015). An APT investigation of an amorphous Cr–B–C thin film. Ultramicroscopy 159, 217222.
Cantor, B, Chang, ITH, Knight, P & Vincent, AJB (2004). Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377, 213218.
Castle, EG, Csanádi, T, Grasso, S, Dusza, J & Reece, MJ (2018). Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep 8, 8609.
De Geuser, F, Lefebvre, W & Blavette, D (2006). 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Philos Mag Lett 86, 227234.
Demkowicz, MJ, Bellon, P & Wirth, BD (2010). Atomic-scale design of radiation-tolerant nanocomposites. MRS Bull 35, 992998.
Fang, S, Xiao, X, Xia, L, Li, W & Dong, Y (2003). Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non-Cryst Solids 321, 120125.
Fazakas, E, Zadorozhnyy, V, Varga, LK, Inoue, A, Louzguine-Luzgin, DV, Tian, F & Vitos, L (2014). Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys. Int J Refract Met Hard Mater 47, 131138.
Feuerbacher, M, Lienig, T & Thomas, C (2018). A single-phase bcc high-entropy alloy in the refractory Zr–Nb–Ti–V–Hf system. Scr Mater 152, 4043.
Fritze, S, Malinovskis, P, Riekehr, L, von Fieandt, L, Lewin, E & Jansson, U (2018). Hard and crack resistant carbon supersaturated refractory multicomponent nanostructured coatings. Sci Rep 8, 14508.
Gao, MC, Zhang, B, Yang, S & Guo, SM (2016). Senary refractory high-entropy alloy HfNbTaTiVZr. Metall Mater Trans A 47, 33333345.
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York, NY: Springer, New York.
Gild, J, Zhang, Y, Harrington, T, Jiang, S, Hu, T, Quinn, MC, Mellor, WM, Zhou, N, Vecchio, K & Luo, J (2016). High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep 6, 37946.
Guo, S, Hu, Q, Ng, C & Liu, CT (2013). More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41, 96103.
Häglund, J, Fernndez Guillermet, A, Grimvall, G & Körling, M (1993). Theory of bonding in transition-metal carbides and nitrides. Phys Rev B 48, 1168511691.
Horz, G, Lindenmaier, K, Klaiss, R (1974). High-temperature solid solubility limit of carbon in niobium and tantalum. J Less Common Met 35, 97105.
Janson, MS (2004). CONTES Instruction Manual.
Jansson, U & Lewin, E (2013). Sputter deposition of transition-metal carbide films—A critical review from a chemical perspective. Thin Solid Films 536, 124.
Johansson, K, Riekehr, L, Fritze, S & Lewin, E (2018). Surface & coatings technology multicomponent Hf–Nb–Ti–V–Zr nitride coatings by reactive magnetron sputter deposition. Surf Coat Technol 349, 529539.
Karlsson, D, Ek, G, Cedervall, J, Zlotea, C, Møller, KT, Hansen, TC, Bednarčík, J, Paskevicius, M, Sørby, MH, Jensen, TR, Jansson, U & Sahlberg, M (2018). Structure and hydrogenation properties of a HfNbTiVZr high-entropy alloy. Inorg Chem 57(4), 21032110.
Krakauer, BW & Seidman, DN (1993). Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys Rev B 48, 67246727.
Li, YJ, Ponge, D, Choi, P & Raabe, D (2015). Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel. Ultramicroscopy 159, 240247.
Malinovskis, P, Fritze, S, Riekehr, L, von Fieandt, L, Cedervall, J, Rehnlund, D, Nyholm, L, Lewin, E & Jansson, U (2018). Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater Des 149, 5162.
Malinovskis, P, Palisaitis, J, Persson, POÅ, Jansson, U & Lewin, E (2017). Synthesis and characterisation of Mo–B–C thin films deposited by non-reactive DC magnetron sputtering. Surf Coat Technol 309, 506515.
Miller, MK, Russell, KF, Thompson, K, Alvis, R & Larson, DJ (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.
Miracle, DB & Senkov, ON (2017). A critical review of high entropy alloys and related concepts. Acta Mater 122, 448511.
Nedfors, N, Primetzhofer, D, Wang, L, Lu, J, Hultman, L & Jansson, U (2015). Characterization of magnetron sputtered Cr–B and Cr–B–C thin films for electrical contact applications. Surf Coat Technol 266, 167176.
Ohring, M (2002). Chapter 9—film structure. In Materials Science of Thin Films, 2nd ed., Ohring, M (Ed.), pp. 495558. New York: Elsevier.
Okamoto, H (2010). Phase Diagrams for Binary Alloys. ASM International 1752.
Pacheco, V, Karlsson, D, Fritze, S, Cedervall, J, Ek, G, Lindwall, G, Berastegui, P, Lewin, E, Sahlberg, M & Jansson, U (2018). Thermal stability of the HfNbTiVZr high entropy alloy. Available at http://dx.doi.org/10.1021/acs.inorgchem.8b02957
Palmquist, JP, Czigany, Z, Odén, M, Neidhart, J, Hultman, L & Jansson, U (2003). Magnetron sputtered W–C films with C60 as carbon source. Thin Solid Films 444, 2937.
Pradeep, KG, Wanderka, N, Choi, P, Banhart, J, Murty, BS & Raabe, D (2013). Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater 61, 46964706.
Rost, CM, Sachet, E, Borman, T, Moballegh, A, Dickey, EC, Hou, D, Jones, JL, Curtarolo, S & Maria, JP (2015). Entropy-stabilized oxides. Nat Commun 6, 18.
Sahlberg, M, Karlsson, D, Zlotea, C & Jansson, U (2016). Superior hydrogen storage in high entropy alloys. Sci Rep 6, 36770.
Shinde, D, Arnoldi, L, Devaraj, A & Vella, A (2016). Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles. J Appl Phys 120, 164308.
Singh, P, Smirnov, AV & Johnson, DD (2018). Ta–Nb–Mo–W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin. Phys Rev Mater 2, 055004.
Singh, S, Wanderka, N, Murty, BS, Glatzel, U & Banhart, J (2011). Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59, 182190.
Takeuchi, A & Inoue, A (2005). Metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46, 28172829.
Troparevsky, MC, Morris, JR, Daene, M, Wang, Y, Lupini, AR & Stocks, GM (2015a). Beyond atomic sizes and Hume-Rothery rules: Understanding and predicting high-entropy alloys. JOM 67, 23502363.
Troparevsky, MC, Morris, JR, Kent, PRC, Lupini, AR & Stocks, GM (2015b). Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X 5, 011041.
Yeh, JW, Chen, SK, Lin, SJ, Gan, JY, Chin, TS, Shun, TT, Tsau, CH & Chang, SY (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater 6, 299303.
Zhang, Y, Whitlow, HJ, Winzell, T & Bubb, IF (1999). Detection efficiency of time-of- flight energy elastic recoil detection analysis systems. Nucl Instrum Methods Phys Res 149, 477489.

Keywords

Related content

Powered by UNSILO

Elemental Distribution in CrNbTaTiW-C High Entropy Alloy Thin Films

  • Deodatta Shinde (a1), Stefan Fritze (a2), Mattias Thuvander (a1), Paulius Malinovskis (a2), Lars Riekehr (a2), Ulf Jansson (a2) and Krystyna Stiller (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.