Skip to main content Accessibility help
×
Home

Effects of the Carbon Coating and the Surface Oxide Layer in Electron Probe Microanalysis

  • Silvina P. Limandri (a1) (a2), Alejo C. Carreras (a1) (a2) and Jorge C. Trincavelli (a1) (a2)

Abstract

Effects related with the attenuation and deflection suffered by an electron beam when it passes through a carbon conductive coating and an oxide film layer on the surface of bulk samples are studied by Monte Carlo simulations and energy dispersive spectroscopy with electron excitation. Analytical expressions are provided for the primary beam energy and intensity losses and for the deflection of the incident electrons in both layers, in terms of the incidence energy, the film mass thicknesses, and the atomic number of the oxidized element. From these analytical expressions, suitable corrections are proposed for the models used to describe the X-ray spectrum of the substrate, including also the contribution of the X-rays generated in the oxide and conductive films and the characteristic X-ray absorption occurring in those layers. The corrections are implemented in a software program for spectral analysis based on a routine of parameter refinement, and their influence is studied separately in experimental spectra of single-element standards measured at different excitation energies. Estimates for the layer thicknesses are also obtained from the spectral fitting procedure.

Copyright

Corresponding author

Corresponding author. E-mail: trincavelli@famaf.unc.edu.ar

References

Hide All
Alexander, M.R., Thompson, G.E., Zhou, X., Beamson, G. & Fairley, N. (2002). Quantification of oxide film thickness at the surface of aluminium using XPS. Surf Interface Anal 34, 485489.
Bastin, G.F., Dijkstra, J.M., Heijligers, H.J.M. & Klepper, D. (1998). In-depth profiling with the electron probe microanalyzer. In Proceedings EMAS'98 3rd Regional Workshop, Llovet, X., Merlet, C. & Salvat, F. (Eds.), pp. 2555. Barcelona: Universitat de Barcelona.
Bastin, G.F. & Heijligers, H.J.M. (2000a). A systematic database of thin-film measurements by EPMA part I—Aluminum films. X-Ray Spectrom 29, 212238.
Bastin, G.F. & Heijligers, H.J.M. (2000b). A systematic database of thin-film measurements by EPMA part II—Palladium films. X-Ray Spectrom 29, 373397.
Bethe, H.A. (1930). Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann Phys 397, 325400.
Bonetto, R., Castellano, G. & Trincavelli, J. (2001). Optimization of parameters in electron probe microanalysis. X-Ray Spectrom 30, 313319.
Campos, C.S., Coleoni, E.A., Trincavelli, J.C., Kaschny, J., Hubbler, J., Soares, M.R.F. & Vasconcellos, M.A.Z. (2001). Metallic thin film thickness determination using electron probe microanalysis. X-Ray Spectrom 30, 253259.
Campos, C.S., Vasconcellos, M.A.Z., Llovet, X. & Salvat, F. (2002). Measurements of L-shell X-ray production cross sections of W, Pt, and Au by 10–30-keV electrons. Phys Rev A 66, 012719.
Chu, W., Meyer, J. & Nicolet, M. (1978). Backscattering Spectrometry. New York: Academic Press.
Demortier, G. & Rubalcaba Sil, J.L. (1996). Differential PIXE analysis of Mesoamerican jewelry items. J Nucl Instrum Meth Phys Res B 118, 352358.
Evans, R.D. (1955). The Atomic Nucleus. New York: McGraw-Hill.
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Romig, A.D. Jr., Lyman, C.E., Fiori, C. & Lifshin, E. (1994). Scanning Electron Microscopy and X-Ray Microanalysis, 2nd ed.New York: Plenum Press.
Hoffmann, S. (1998). Sputter depth profile analysis of interfaces. Rep Prog Phys 61, 827888.
Joy, D.C. & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11, 176180.
Kato, T. (2007). Monte Carlo study of quantitative electron probe microanalysis of monazite with a coating film: Comparison of 25 nm carbon and 10 nm gold at E 0 = 15 and 25 keV. Geostand Geoanal Res 31, 8994.
Kolbe, M., Beckhoff, B., Krumrey, M. & Ulm, G. (2005). Thickness determination for Cu and Ni nanolayers: Comparison of completely reference-free fundamental parameter-based X-ray fluorescence analysis and X-ray reflectometry. Spectrochim Acta B 60, 505510.
Kyser, D.F. & Murata, K. (1974). Quantitative electron microprobe analysis of thin films on substrates. IBM J Res Dev 18, 352363.
Limandri, S., Trincavelli, J., Bonetto, R. & Carreras, A. (2008). Structure of the Pb, Bi, Th and U M X-ray spectra. Phys Rev A 78, 022518.
Liu, C., Erdmann, J. & Macrander, A. (1999). In situ spectroscopic ellipsometry as a surface-sensitive tool to probe thin film growth. Thin Solid Films 355, 4148.
Merlet, C. (1995). A new quantitative procedure for stratified samples in EPMA. In Proceedings 29th Annual Conference of the Microbeam Analysis Society, Etz, E.S. (Ed.), p. 203.New York: VHC Publishers.
Osada, Y. (2005). Monte Carlo study of quantitative EPMA analysis of a nonconducting sample with a coating film. X-Ray Spectrom 34, 96100.
Packwood, R. & Brown, J. (1981). A Gaussian expression to describe ϕ(ρz) curves for quantitative electron probe microanalysis. X-Ray Spectrom 10, 138146.
Pouchou, J.L. & Pichoir, F. (1990). Surface film X-ray microanalysis. Scanning 12, 212224.
Salvat, F., Fernández-Varea, J. & Sempau, J. (2003). PENELOPE—A code system for Monte Carlo simulation of electron and photon transport. Issy-les-Molineaux, France: OECD/NEA Data Bank.
Suzuki, E. (2002). High-resolution scanning electron microscopy of immunogold-labelled cells by the use of thin plasma coating of osmium. J Microsc 208, 153157.
Terada, S., Murakami, H. & Nishihagi, K. (2001). Thickness and density measurement for new materials with combined X-ray technique. SEMICON Europa 2001, Munich, April 23.
Thomsen-Schmidt, P., Hasche, K., Ulm, G., Herrmann, K., Krumrey, M., Ade, G., Stümpel, J., Busch, I., Schädlich, S., Schindler, A., Frank, W., Hirsch, D., Procop, M. & Beck, U. (2004). Realisation and metrological characterisation of thickness standards below 100 nm. Appl Phys A 78, 645649.
Trincavelli, J., Limandri, S., Carreras, A. & Bonetto, R. (2008). Experimental method to determine the absolute efficiency curve of a wavelength dispersive spectrometer. Microsc Microanal 14, 306314.
Trincavelli, J. & Van Grieken, R. (1994). Peak-to-background method for standardless electron microprobe analysis of particles. X-Ray Spectrom 23, 254260.
Yakowitz, H. & Newbury, D.E. (1976). A simple analytical method for thin film analysis with massive pure element standards. In Proceedings 9th Annual Scanning Electron Microscope Symposium, 1, pp. 151152. Chicago: IITRI.

Keywords

Effects of the Carbon Coating and the Surface Oxide Layer in Electron Probe Microanalysis

  • Silvina P. Limandri (a1) (a2), Alejo C. Carreras (a1) (a2) and Jorge C. Trincavelli (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed