Skip to main content Accessibility help

Effect of Heavy Mass Ion (Gold) and Light Mass Ion (Boron) Irradiation on Microstructure of Tungsten

  • Prashant Sharma (a1), Padivattathumana Maya (a1), Satyaprasad Akkireddy (a2), Prakash M. Raole (a1), Anil K. Tyagi (a1) (a3), Asha Attri (a1), Pawan K. Kulriya (a4), Parmendra K. Bajpai (a5), Sudhir Mishra (a6), Shiv P. Patel (a5), Tarkeshwar Trivedi (a5), K. B. Khan (a6) and Shishir P. Deshpande (a1) (a3)...


The difference in the defect structures produced by different ion masses in a tungsten lattice is investigated using 80 MeV Au7+ ions and 10 MeV B3+ ions. The details of the defects produced by ions in recrystallized tungsten foil samples are studied using transmission electron microscopy. Dislocations of type b = 1/2[111] and [001] were observed in the analysis. While highly energetic gold ion produced small clusters of defects with very few dislocation lines, boron has produced large and sparse clusters with numerous dislocation lines. The difference in the defect structures could be due to the difference in separation between primary knock-on atoms produced by gold and boron ions.


Corresponding author

*Author for correspondence: Prashant Sharma, E-mail:,


Hide All
Chou, YT (1972). Dislocation reactions and networks in anisotropic b.c.c. crystals. Mater. Sci. Eng. C 100, 8186. doi: 10.1016/0025-5416(72)90071-7.
Federici, G, Biel, W, Gilbert, MR, Kemp, R, Taylor, N & Wenninger, R (2017). European DEMO design strategy and consequences for materials ITER conceptual design. Nucl Fusion 570(092002), 125. doi: 10.1088/1741-4326/57/9/092002.
Grzonka, J, Ciupiński, L, Smalc-Koziorowska, OV, Ogorodnikova, M, Mayer, KJ & Kurzydłowski, (2014). Electron microscopy observations of radiation damage in irradiated and annealed tungsten. Nucl. Instr. Meth. Phys. Res. B 340, 2733. 10.1016/j.nimb.2014.07.043.
Hasanzadeh, S, Schäublin, R, Décamps, B, Rousson, V, Autissier, E, Barthe, MF & Hébert, C (2018). Three-dimensional scanning transmission electron microscopy of dislocation loops in tungsten. Micron 1130(May), 2433. doi: 10.1016/j.micron.2018.05.010.
Hideo, W, Naoki, F, Shiori, N & Naoaki, Y (2014). Microstructure and thermal desorption of deuterium in heavy-ion-irradiated pure tungsten. J Nucl Mater 4550(1–3), 5155. doi: 10.1016/j.jnucmat.2014.03.060.
Hull, D & Bacon, JD (2011). Introduction to Dislocations, vol. 1. 5th ed. Oxford, UK: Butterworth-Heinemann, Elsevier Ltd. 10.1016/B978-0-08-096672-4.00006-2.
Kanjilal, D, Chopra, S, Narayanan, MM, Iyer, IS, Vandana, J, Joshi, R & Datta, SK (1993). Testing and operation of the 15UD Pelletron at NSC. Nucl. Instr. Meth. Phys. Res. A 3280(1–2), 97100. doi: 10.1016/0168-9002(93)90610-T.
Kaufmann, M & Neu, R (2007). Tungsten as first wall material in fusion devices. Fusion Eng Des 820(5–14), 521527. doi: 10.1016/j.fusengdes.2007.03.045.
Kinchin, GH & Pease, RS (1955). The displacement of atoms in solids by radiation. Rep Prog Phys 180(1), 151. doi: 10.1088/0034-4885/18/1/301.
Labelle, AJ-RR (2011). The Effects of Helium on Deuterium Retention in Tungsten Under Simultaneous Irradiation. Thesis, University of Toronto.
Lassner, E & Schubert, WD (2012). Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. USA: Springer. ISBN 9781461549079.
Nandipati, G, Setyawan, W, Heinisch, HL, Roche, KJ, Kurtz, RJ & Wirth, BD (2015). Displacement cascades and defect annealing in tungsten, part III: The sensitivity of cascade annealing in tungsten to the values of kinetic parameters. J Nucl Mater 462, 345353. doi: 10.1016/j.jnucmat.2015.01.059.
Norfleet, DM, Dimiduk, DM, Polasik, SJ, Uchic, MD & Mills, MJ (2008). Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater 560(13), 29883001. doi: 10.1016/j.actamat.2008.02.046.
Ogorodnikova, OV, Gasparyan, Y, Efimov, V, Ciupinski, L & Grzonka, J (2014). Annealing of radiation-induced damage in tungsten under and after irradiation with 20 MeV self-ions. J Nucl Mater 4510(1), 379386. ISSN.
Oya, Y, Li, X, Sato, M, Yuyama, K, Zhang, L, Kondo, S, Hinoki, T, Hatano, Y, Watanabe, H, Yoshida, N & Chikada, T (2015). Thermal desorption behavior of deuterium for 6 MeV Fe ion irradiated W with various damage concentrations. J Nucl Mater 461, 336340. doi: 10.1016/j.jnucmat.2015.03.032.
Pitts, RA, Carpentier, S, Escourbiac, F, Hirai, T, Komarov, V, Lisgo, S, Kukushkin, AS, Loarte, A, Merola, M, Sashala Naik, A, Mitteau, R, Sugihara, M, Bazylev, B & Stangeby, PC (2013). A full tungsten divertor for ITER: Physics issues and design status. J Nucl Mater 4380(Suppl), S48S56. doi: 10.1016/j.jnucmat.2013.01.008.
Roth, J, Tsitrone, E, Loarte, A, Loarer, T, Counsell, G, Neu, R, Philipps, V, Brezinsek, S, Lehnen, M, Coad, P, Grisolia, C, Schmid, K, Krieger, K, Kallenbach, A, Lipschultz, B, Doerner, R, Causey, R, Alimov, V, Shu, W, Ogorodnikova, O, Kirschner, A, Federici, G & Kukushkin, A (2009). Recent analysis of key plasma wall interactions issues for ITER. J Nucl Mater 390–3910(1), 19. doi: 10.1016/j.jnucmat.2009.01.037.
Rueden, CT, Johannes, S, Hiner, MC, DeZonia, BE, Walter, AE, Arena, ET & Eliceiri, KW (2017). Imagej2: Imagej for the next generation of scientific image data. BMC Bioinformatics 180(1), 529. doi: 10.1186/s12859-017-1934-z.
Taylor, N, Merrill, B, Cadwallader, L, Di Pace, L, El-Guebaly, L, Humrickhouse, P, Pinna, T, Panayotov, D, Reyes, S, Porfiri, M-T, Shimada, M & Willms, S (2017). Materials-related issues in the safety and licensing of nuclear fusion facilities ITER conceptual design recent citations. Nucl Fusion 570(092003), 128.
Trivedi, T, Patel Shiv, P, Chandra, P & Bajpai, PK (2017). Ion beam facilities at the national centre for accelerator based research using a 3 MV Pelletron accelerator. Phys Procedia 900(November), 100106. doi: 10.1016/j.phpro.2017.09.032.
Was, GS (2007). Fundamentals of Radiation Materials Science, vol. 44. Berlin, Heidelberg, New York: Springer. ISBN 9788578110796. doi: 10.1017/CBO9781107415324.004.
Was, GS & Andresen, PL (2014). Woodhead Publishing Series in Energy. Cambridge, UK: Woodhead Publishing. pp. 355420. 10.1533/9780857097552.2.355.
Yao, B, Edwards, DJ & Kurtz, RJ (2013). TEM characterization of dislocation loops in irradiated bcc Fe-based steels. J Nucl Mater 4340(1–3), 402410. doi: 10.1016/j.jnucmat.2012.12.002.
Yi, X, Jenkins, ML, Kirk, MA, Zhou, Z & Roberts, SG (2016). In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution. Acta Mater 112, 105120. doi: 10.1016/j.actamat.2016.03.051.
Ziegler, JF (1988). The stopping and range of ions in solids. In Ion Implantation Science and Technology, Ziegler, JF (Ed.), 2nd ed.Ed. pp. 361. London, UK: Academic Press 10.1016/B978-0-12-780621-1.50005-8.
Ziegler, JF, Ziegler, MD & Biersack, JP (2010). SRIM—The stopping and range of ions in matter (2010). Nucl. Instr. Meth. Phys. Res. B 2680(11–12), 18181823. doi: 10.1016/j.nimb.2010.02.091.


Effect of Heavy Mass Ion (Gold) and Light Mass Ion (Boron) Irradiation on Microstructure of Tungsten

  • Prashant Sharma (a1), Padivattathumana Maya (a1), Satyaprasad Akkireddy (a2), Prakash M. Raole (a1), Anil K. Tyagi (a1) (a3), Asha Attri (a1), Pawan K. Kulriya (a4), Parmendra K. Bajpai (a5), Sudhir Mishra (a6), Shiv P. Patel (a5), Tarkeshwar Trivedi (a5), K. B. Khan (a6) and Shishir P. Deshpande (a1) (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed