Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T13:56:14.512Z Has data issue: false hasContentIssue false

EELS Studies of ZnO and ZnO:In Films Deposited By Spray Pyrolysis

Published online by Cambridge University Press:  02 July 2020

F. Paraguay D.
Affiliation:
Divisién de Física y Química de Materiales, Centro de Investigation en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih. CP , 31109, Mexico.
M. Miki-Yoshida
Affiliation:
Divisién de Física y Química de Materiales, Centro de Investigation en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih. CP , 31109, Mexico.
F. Espinosa-Magaña
Affiliation:
Divisién de Física y Química de Materiales, Centro de Investigation en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih. CP , 31109, Mexico.
Get access

Abstract

Zinc oxide based coatings are of much interest in science and technology due to their interesting applications, such as in gas sensor devices, transparent electrodes, piezoelectric devices, varistor ,surface acoustic-wave devices ,etc. Thin films of ZnO also have some advantages over indium tin oxide (ITO) and tin oxide, which are usually used as transparent conductors, the former are chemically stable to a hydrogen plasma such as that used in the elaboration of solar cells. Many techniques have been employed to produce zinc oxide based coatings e.g. radio frequency magnetron, spray pyrolysis, sputtering, chemical vapor deposition, sol gel, pulsed laser deposition, etc. Among these techniques, the spray pyrolysis has proved to be a simple, reproducible, and inexpensive method, particularly useful for large area applications.

The main features of the spray pyrolytic system are fully described elsewhere. We have used a spray system attached onto mobile stage that provides a sweeping movement to the spray nozzle.

Type
Thin Films & Coatings
Copyright
Copyright © Microscopy Society of America 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1.Ambia, M.G., Islam, M.N., Obaidul Hakim, M., J.Mater. Sci. 27 (1992) 5169CrossRefGoogle Scholar
2.Roth, A.P., Williams, D. F., J.Appl. Phys. 52 (1981) 6685CrossRefGoogle Scholar
3.Jin, Z.C., Hamberg, I., Granqvist, C.G., J.Appl. Phys. 64 (1988) 5117CrossRefGoogle Scholar
4.Kwon, C.H., Hong, H.K., Yun, D.H., Lee, K., Kim, S.T., Roh, Y.H., Lee, B.H., Sensor Actual. B-Chem. 24/25(1995)610.CrossRefGoogle Scholar
5.Mayor, S., Kumar, S., Bhatnagar, M., Chopra, K.L., Appl. Phys. Lett. 49 (1986) 394Google Scholar
6.Gardeniers, J.G.E., Rittersma, Z.M., Burger, G.J., J. Appl. Phys. 83 (1998) 7844CrossRefGoogle Scholar
7.Mukae, K., Tsuda, K., Nagasawa, I., Jpn. J. Appl. Phys. 16 (1997) 1361CrossRefGoogle Scholar
8.Chang, S. J., Su, Y.K, Shei, Y. P., J. Vac. Sci. Technol. A13 (1995) 385CrossRefGoogle Scholar
9.Miki-Yoshida, M., Paraguay-Delgado, F., Estrada-López, W., Andrade, E., Thin Solids Films.Google Scholar
10.Egerton, R. F.. Electron Energy-Loss Spectroscopy 2nd Ed. Plenum Press, New York, 1996.CrossRefGoogle Scholar
11.Major, S., Banerjee, A. and Chopra, K. L., J. Mater. Res. 1 (2), 1986, 300.CrossRefGoogle Scholar
12.Tiburcio-Silver, A., Joubert, J. C. et Labeau, M., J. Phys. III France 2, (1992) 1287.Google Scholar