Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T22:38:05.562Z Has data issue: false hasContentIssue false

Direct Insights on Flax Fiber Structure by Focused Ion Beam Microscopy

Published online by Cambridge University Press:  26 January 2010

Bernadette Domenges*
Affiliation:
LAMIPS, Joint Laboratory NXP-CRISMAT, CNRS-UMR6508, ENSICAEN, UCBN, 2 rue de la Girafe, BP5120, 14079 Caen Cedex, France
Karine Charlet
Affiliation:
CRISMAT Laboratory, CNRS-UMR 6508, ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex, France
*
Corresponding author. E-mail: bernadette.domenges@nxp.com
Get access

Abstract

In this article, it is shown that focused ion beam (FIB) systems can be used to study the inner structure of flax fibers, the use of which as a reinforcing material in polymer composites still draws much interest from multiple disciplines. This technique requires none of the specific preparations necessary for scanning electron microscopy or transmission electron microscopy studies. Irradiation experiments performed on FIB prepared cross sections with very low Ga+ ion beam currents revealed the softer material components of fibers. Thus, it confirmed the presence of pectin-rich layers at the interfaces between the fibers of a bundle, but also allowed the precise localization of such layers within the secondary cell wall. Furthermore, it suggested new insights on the transition modes between the sublayers of the secondary cell wall.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Astley, O.M. & Donald, A.M. (2001). A small-angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers. Biomacromolecules 2, 672680.CrossRefGoogle ScholarPubMed
Baley, C. (2002). Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase. Compos Part A 33, 939948.CrossRefGoogle Scholar
Bos, H.L. & Donald, A.M. (1999). In situ ESEM study of the deformation of elementary flax fibers. J Mater Sci 34, 30293034.CrossRefGoogle Scholar
Busnel, F. (2006). Contribution de matériaux composites à matrice organique renforcés par des fibres de lin—Influence des traitements chimiques sur la liaison interfaciale fibre/matrice. Thesis, Université de Bretagne Sud.Google Scholar
Charlet, K., Baley, C., Morvan, C., Jernot, J.P., Gomina, M. & Breard, J. (2007). Characteristics of Hermès flax fibers as a function of their location in the stem and properties of the derived unidirectional composites. Compos Part A 38, 19121921.CrossRefGoogle Scholar
Charlet, K., Morvan, C., Breard, J., Jernot, J.P. & Gomina, M. (2006). Etude morphologique d'un composite naturel—La Fibre de Lin. RCMA 16, 1124.CrossRefGoogle Scholar
Giannuzzi, L.A., Prenitzer, B.I. & Kempshall, B.W. (2006). Ion-solid interactions. In Introduction to Focused Ion Beam, Instrumentation, Theory, Technique and Practice, Giannuzzi, L.A. & Stevie, F.A. (Eds.), pp. 1352. New York: Springer.Google Scholar
Gorshkova, T.A., Wyatt, S.E., Salnokov, V.V., Gibeaut, D.M., Ibragimov, M.R., Lozovaya, V.V. & Carpita, N.C. (1996). Cell-wall polysaccharides of developing flax plants. Plant Physiol 110, 721729.CrossRefGoogle ScholarPubMed
Heymann, J.A.W., Hayles, M., Gestmann, I., Giannuzzi, L.A., Lich, B. & Subramaniam, S. (2006). Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155, 6373.CrossRefGoogle ScholarPubMed
Hulleman, H.D., Van Hazendonk, J.M. & Van Dam, J.E.G. (1994). Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopy. Carbohydr Res 261, 163172.CrossRefGoogle Scholar
Jauneau, A., Roy, S., Reis, D. & Vian, B. (1998). Probes and microscopical methods for the localization of pectins in plant cells. Int J Plant Sci 159, 113.CrossRefGoogle Scholar
Levi-Setti, R., Fox, T.R. & Lam, K. (1983). Ion channeling effects in scanning ion microscopy with a 60 keV Ga+ probe. Nucl Instrum Methods 205, 299309.CrossRefGoogle Scholar
Mark, R.E. (1967). Physical nature of cell walls. In Cell Wall Mechanics of Tracheids, pp. 1011. Newhaven, London: Yale University Press.Google Scholar
McDougall, G.J. (1993). Isolation and partial characterization of the non-cellulosic polysaccharides of flax fibre. Carbohydr Res 241, 227236.CrossRefGoogle Scholar
Morvan, C., Andeme-Onzighi, C., Irault, R., Himmelsbach, D.S., Driouich, A. & Akin, D.E. (2003). Building flax fibers: More than one brick in the walls. Plant Physiol Biochem 41, 935944.CrossRefGoogle Scholar
Müller, M., Czihak, C., Vogl, G., Fratzl, P., Schober, H. & Riekel, C. (1998). Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31, 39533957.CrossRefGoogle Scholar
Näslund, P., Vuong, R., Chanzy, H. & Jesior, J.C. (1988). Diffraction contrast transmission electron microscopy on flax fiber ultrathin cross sections. Text Res J 58, 414417.CrossRefGoogle Scholar
Olson, T.K., Lee, R.G. & Morgan, J.C. (1992). Contrast mechanism in focused ion beam imaging. Proceedings of the 18th International Symposium for Testing and Failure Analysis (ISTFA 92), pp. 373382. Materials Park, OH: ASM International.Google Scholar
Roland, J.C., Mosiniak, M. & Roland, D. (1995). Dynamique du positionnement de la cellulose dans les parois des fibres textiles du lin (Linum usitatissimum). Acta Bot Gallica 142, 463484.CrossRefGoogle Scholar
Stevie, F.A. (2006). Focused ion beam secondary ion mass spectrometry (FIB-SIMS). In Introduction to Focused Ion Beam, Instrumentation, Theory, Technique and Practice, Giannuzzi, L.A. & Stevie, F.A. (Eds.), pp. 269280. New York: Springer.Google Scholar
Stevie, F.A., Shanee, T.C., Kahora, M.P.M., Hull, R., Bahnck, D., Kannan, V.C. & Avid, E. (1995). Applications of focused ion beams in microelectronics production, design and development. Surf Interface Anal 23, 6168.CrossRefGoogle Scholar
Turner, A.J. (1953). The long vegetable fibers. In The Structure of Textile Fibers, Urquhart, A.R., Howitt, F.O. (Eds.), Chapter VIII, pp. 91117. Manchester, U.K.: The Textile Institute.Google Scholar
Wang, H.H., Drummond, J.G., Reath, S.M., Hunt, K. & Watson, P.A. (2001). An improved fibril angle measurement method for wood fibres. Wood Sci Technol 34, 493503.CrossRefGoogle Scholar