Skip to main content Accessibility help
×
Home

Design and Application of a Novel In Situ Nano-Manipulation Stage for Transmission Electron Microscopy

  • Bon-Woong Koo (a1), Seung-Pyo Hong (a1), Seong-Il Kim (a1), Chan S. Kang (a1), Sang-Sub Han (a1), Kyu H. Oh (a1) and Young-Woon Kim (a1)...

Abstract

A novel nano-scale manipulator capable of handling low-dimensional materials with three-dimensional linear motion, gripping action, and push–pull action of the gripper was developed for an in situ experiment in transmission electron microscopy. X-Y-Z positioning and push–pull action were accomplished by a piezotubing system, combined with a specially designed assembly stage that consisted of a lever-action gripping tip backed by a push–pull piezostack. The gripper tip consisted of tungsten wire fabricated by electrochemical etching followed by a focused ion beam process. Performance of the nano-scale manipulator was demonstrated in a grab-and-pick test of a single silver nanowire and in an in situ tensile test of a pearlitic steel sample with a specific orientation.

Copyright

Corresponding author

* Corresponding author. youngwk@snu.ac.kr

References

Hide All
Akita, S., Nakayama, Y., Mizooka, S., Takano, Y., Okawa, T., Miyatake, Y., Yamanaka, S., Tsuji, M. & Nosaka, T. (2001). Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl Phys Lett 79(11), 16911693.
Andersen, K.N., Petersen, D.H., Carlson, K., Molhave, K., Sardan, O., Horsewell, A., Eichhorn, V., Fatikow, S. & Boggild, P. (2009). Multimodal electrothermal silicon microgrippers for nanotube manipulation. IEEE Trans Nanotechnol 8(1), 7685.
Blideran, M.M., Bertsche, G., Henschel, W. & Kern, D.P. (2006a). A mechanically actuated silicon microgripper for handling micro- and nanoparticles. Microelectron Eng 83(4–9), 13821385.
Blideran, M.M., Fleischer, M., Henschel, W., Kern, D.P., Sterr, J., Schock, K., Kleindiek, S., Langer, M.G., Loffler, K. & Grauvogel, F. (2006b). Characterization and operation of a mechanically actuated silicon microgripper. J Vac Sci Technol B 24(6), 32393243.
Boggild, P., Hansen, T.M., Tanasa, C. & Grey, F. (2001). Fabrication and actuation of customized nanotweezers with a 25 nm gap. Nanotechnology 12(3), 331335.
Briston, K.J., Cullis, A.G. & Inkson, B.J. (2010). Fabrication of a novel SEM microgripper by electrochemical and FIB techniques. J Micromech Microeng 20(1), 015028015032.
Carrozza, M.C., Eisinberg, A., Menciassi, A., Campolo, D., Micera, S. & Dario, P. (2000). Towards a force-controlled microgripper for assembling biomedical microdevices. J Micromech Microeng 10(2), 271276.
Cavallini, M. & Biscarini, F. (2000). Electrochemically etched nickel tips for spin polarized scanning tunneling microscopy. Rev Sci Instrum 71(12), 44574460.
Chang, J.Y., Min, B.K., Kim, J., Lee, S.J. & Lin, L.W. (2009). Electrostatically actuated carbon nanowire nanotweezers. Smart Mater Struct 18(6), 065017065023.
Chen, B.K., Zhang, Y., Perovic, D.D. & Sun, Y. (2011). MEMS microgrippers with thin gripping tips. J Micromech Microeng 21(10), 105004105008.
Chen, B.K., Zhang, Y. & Sun, Y. (2009). Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J Microelectromech Sys 18(3), 652659.
Choi, H.S., Lee, D.C., Kim, S.S. & Han, C.S. (2005). The development of a microgripper with a perturbation-based configuration design method. J Micromech Microeng 15(6), 13271333.
Clevy, C., Hubert, A., Agnus, J. & Chaillet, N. (2005). A micromanipulation cell including a tool changer. J Micromech Microeng 15(10), S292S301.
Deutschinger, A., Schmid, U., Schneider, M., Brenner, W., Wanzenbock, H., Volland, B., Ivanov, T. & Rangelow, I.W. (2010). Characterization of an electro-thermal micro gripper and tip sharpening using FIB technique. Microsyst Technol 16(11), 19011908.
Fahlbusch, S., Mazerolle, S., Breguet, J.M., Steinecker, A., Agnus, J., Perez, R. & Michler, J. (2005). Nanomanipulation in a scanning electron microscope. J Mater Process Technol 167(2–3), 371382.
Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J. & Zettl, A. (2003). Rotational actuators based on carbon nanotubes. Nature 424(6947), 408410.
Goldfarb, M. & Celanovic, N. (1999). A flexure-based gripper for small-scale manipulation. Robotica 17, 181187.
Haque, M.A. & Saif, M.T.A. (2002). Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens Actuators A Phys 97–98, 239245.
Haque, M.A. & Saif, M.T.A. (2005). In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res 20(7), 17691777.
Huang, S.C., Lee, C.M., Chiu, C.C. & Chen, W.L. (2006). Topology optimal compliant microgripper. JSME Int J Ser A 49(4), 589596.
Jayaram, K. & Joshi, S.S. (2010). Development of a flexure-based, force-sensing microgripper for micro-object manipulation. J Micromech Microeng 20, 015001015010.
Jericho, S.K., Jericho, M.H., Hubbard, T. & Kujath, M. (2004). Micro-electro-mechanical systems microtweezers for the manipulation of bacteria and small particles. Rev Sci Instrum 75(5), 12801282.
Kim, B., Park, J.S., Moon, C., Jeong, G.M. & Ahn, H.S. (2008). A precision robot system with modular actuators and MEMS micro gripper for micro system assembly. J Mech Sci Technol 22(1), 7076.
Kim, D.H., Lee, M.G., Kim, B. & Sun, Y. (2005). A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater Struct 14(6), 12651272.
Kim, P. & Lieber, C.M. (1999). Nanotube nanotweezers. Science 286(5447), 21482150.
Kim, Y.-W., Ko, D.-S., Kim, S.-D., Li, X., Park, G., Kim, Y. & Park, C. (2007). In-situ observation of structural change and failure detection for electrically active devices in TEM. Microsc Microanal 13(Suppl S02), 808809.
Kiuchi, M., Matsui, S. & Isono, Y. (2007). Mechanical characteristics of FIB deposited carbon nanowires using an electrostatic actuated nano tensile testing device. J Microelectromech Syst 16(2), 191201.
Kizuka, T., Umehara, S. & Fujisawa, S. (2001). Metal-insulator transition in stable one-dimensional arrangements of single gold atoms. Jpn J Appl Phy 40(1ab, Pt 2), L71L74.
Kizuka, T., Yamada, K., Deguchi, S., Naruse, M. & Tanaka, N. (1997). Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys Rev B 55(12), R7398R7401.
Koo, B.W., Chang, Y.J., Hong, S.P., Kang, C.S., Jeong, S.W., Nam, W.J., Park, I.J., Lee, Y.K., Oh, K.H. & Kim, Y.W. (2014). Experimental measurement of Young’s modulus from a single crystalline cementite. Scripta Mater 82, 2528.
Kyung, J.H., Ko, B.G., Ha, Y.H. & Chung, G.J. (2008). Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges. Sens Actuators A Phys 141(1), 144150.
Li, N., Wang, H., Misra, A. & Wang, J. (2014). In situ nanoindentation study of plastic co-deformation in Al-TiN nanocomposites. Sci Rep 4, 66336638.
Menciassi, A., Eisinberg, A., Carrozza, M.C. & Dario, P. (2003). Force sensing microinstrument for measuring tissue properties and pulse in microsurgery. IEEE ASME Trans Mechatron 8(1), 1017.
Molhave, K. & Hansen, O. (2005). Electro-thermally actuated microgrippers with integrated force-feedback. J Micromech Microeng 15(6), 12651270.
Nah, S.K. & Zhong, Z.W. (2007). A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A Phys 133(1), 218224.
Nakayama, Y. (2002). Scanning probe microscopy installed with nanotube probes and nanotube tweezers. Ultramicroscopy 91(1–4), 4956.
Nguyen, N.T., Ho, S.S. & Low, C.L.N. (2004). A polymeric microgripper with integrated thermal actuators. J Micromech Microeng 14(7), 969974.
Panepucci, R.R. & Martinez, J.A. (2008). Novel SU-8 optical waveguide microgripper for simultaneous micromanipulation and optical detection. J Vac Sci Technol B 26(6), 26242627.
Perez, R., Agnus, J., Clevy, C., Hubert, A. & Chaillet, N. (2005). Modeling, fabrication, and validation of a high-performance 2-DoF piezoactuator for micromanipulation. IEEE ASME Trans Mechatron 10(2), 161171.
Raghavendra, M.R.A., Kumar, A.S. & Jagdish, B.N. (2010). Design and analysis of flexure-hinge parameter in microgripper. Int J Adv Manuf Technol 49(9–12), 11851193.
Roch, I., Bidaud, P., Collard, D. & Buchaillot, L. (2003). Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film. J Micromech Microeng 13(2), 330336.
Sardan, O., Eichhorn, V., Petersen, D.H., Fatikow, S., Sigmund, O. & Boggild, P. (2008). Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19, 495503495511.
Solano, B. & Wood, D. (2007). Design and testing of a polymeric microgripper for cell manipulation. Microelectron Eng 84(5–8), 12191222.
Svensson, K., Jompol, Y., Olin, H. & Olsson, E. (2003). Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion. Rev Sci Instrum 74(11), 49454947.
Wang, Z.L. (2004). Properties of nanobelts and nanotubes measured by in situ TEM. Microsc Microanal 10(1), 158166.
Wong, E.W., Sheehan, P.E. & Lieber, C.M. (1997). Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 19711975.
Yamahata, C., Collard, D., Legrand, B., Takekawa, T., Kunternura, M., Hashiguchi, G. & Fujita, H. (2008). Silicon nanotweezers with subnanometer resolution for the micromanipulation of biomolecules. J Microelectromech Syst 17(3), 623631.
Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. & Ruoff, R.S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637640.
Zubir, M.N.M., Shirinzadeh, B. & Tian, Y.L. (2009). Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sens Actuators A Phys 150(2), 257266.

Keywords

Type Description Title
WORD
Supplementary materials

Koo supplementary material S1
Koo supplementary material S1

 Word (16 KB)
16 KB
VIDEO
Supplementary materials

Koo supplementary material S2
Video

 Video (2.2 MB)
2.2 MB
VIDEO
Supplementary materials

Koo supplementary material S3
Video

 Video (2.0 MB)
2.0 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed