Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T22:49:15.065Z Has data issue: false hasContentIssue false

Correlation of Multiplicity and Chemistry in AlxGa1−xN Heterostructure via Atom Probe Tomography

Published online by Cambridge University Press:  04 February 2020

Olivia G. Licata
Affiliation:
Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY14260, USA
Scott R. Broderick
Affiliation:
Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY14260, USA
Baishakhi Mazumder*
Affiliation:
Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY14260, USA
*
*Author for correspondence: Baishakhi Mazumder, E-mail: baishakh@buffalo.edu
Get access

Abstract

In this work, the correlation between composition and relative evaporation field was investigated by tracking the statistics of multi-hit detector events in atom probe tomography (APT). This approach is applied systematically to a GaN-based nitride heterostructure with five AlxGa1−xN layers of varying Al composition. The relative field evaporation and the percentage of multi-hit events were found to increase with higher Al concentration. Furthermore, the comparison of the relative evaporation fields of AlN with respect to the constituent ions is found to be less than GaN with respect to its constituent ions. Despite equivalent compositions between opposing interfaces of the same AlxGa1−xN interlayer, the rate of change in multiplicity exhibits a consistent asymmetric trend with a steeper slope across the AlxGa1−xN/GaN interface compared to the GaN/AlxGa1−xN interface. The AlxGa1−xN/GaN heterostructure serves as a test structure for exploring field evaporation and neighborhood chemistry, which can be applied to any material chemistry and particularly other nitride systems.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bas, P (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87, 298304.10.1016/0169-4332(94)00561-3CrossRefGoogle Scholar
Dawahre, N, Shen, G, Renfrow, SN, Kim, SM & Kung, P (2013). Atom probe tomography of AlInN/GaN HEMT structures. J Vac Sci Technol B 31(4), 041802.10.1116/1.4807321CrossRefGoogle Scholar
De Geuser, F, Gault, B, Bostel, A & Vurpillot, F (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601(2), 536543.10.1016/j.susc.2006.10.019CrossRefGoogle Scholar
Di Russo, E, Blum, I, Houard, J, Gilbert, M, Da Costa, G, Blavette, D & Rigutti, L (2018). Compositional accuracy of atom probe tomography measurements in GaN: Impact of experimental parameters and multiple evaporation events. Ultramicroscopy 187, 126134.10.1016/j.ultramic.2018.02.001CrossRefGoogle Scholar
Fireman, MN, Browne, DA, Mazumder, B, Speck, JS & Mishra, UK (2015). Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH3-molecular beam epitaxy. Appl Phys Lett 106(20), 202106.10.1063/1.4921633CrossRefGoogle Scholar
Gault, B, Marquis, EA, Saxey, DW, Huges, GM, Mangelinck, D, Toberer, ES & Snyder, GJ (2010). High resolution nanostructural investigation of Zn Sb alloys. Scr Mater 63, 784787.10.1016/j.scriptamat.2010.06.014CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York, NY, USA: Springer.10.1007/978-1-4614-3436-8CrossRefGoogle Scholar
Holzworth, MR, Rudawski, NG, Pearton, SJ, Jones, KS, Lu, L, Kang, TS, Ren, F & Johnson, JW (2011). Characterization of the gate oxide of an AlGaN/GaN high electron mobility transistor. Appl Phys Lett 98(12),122103.10.1063/1.3569715CrossRefGoogle Scholar
Kaun, SW, Mazumder, B, Fireman, MN, Kyle, ECH, Mishra, UK & Speck, JS (2015). Pure AlN layers in metal-polar AlGaN/AlN/GaN and AlN/GaN heterostructures grown by low-temperature ammonia-based molecular beam epitaxy. Semicond Sci Technol 30(5), 055010.10.1088/0268-1242/30/5/055010CrossRefGoogle Scholar
Kinno, T, Akutsu, H, Tomita, M, Kawanaka, S, Sonehara, T, Hokazono, A, Renaud, L, Martin, I, Benbalagh, R, Salle, B & Takeno, S (2012). Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography. Appl Surf Sci 259, 726730.10.1016/j.apsusc.2012.07.108CrossRefGoogle Scholar
Kitaguchi, HS, Moody, MP, Li, HY, Evans, HE, Hardy, MC & Lozano-Perez, S (2015). An atom probe tomography study of the oxide metal interface of an oxide intrusion ahead of a crack in a polycrystalline Ni-based superalloy. Scr Mater 97, 4144.10.1016/j.scriptamat.2014.10.025CrossRefGoogle Scholar
Kruska, K & Schreiber, D (2015). Background recovery through the quantification of delayed evaporation multi-ion events in atom-probe data. Microsc Microanal 21(3), 2.10.1017/S1431927615005085CrossRefGoogle Scholar
Licata, O & Mazumder, B (2019). Multiplicity vs. composition study to understand the field evaporation of polar AlxGa1− xN heterostructures: A new approach. Microsc Microanal 25(S2), 296297.10.1017/S1431927619002216CrossRefGoogle Scholar
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R 69(4–5), 3762.10.1016/j.mser.2010.05.001CrossRefGoogle Scholar
Mazumder, B, Kaun, SW, Lu, J, Keller, S, Mishra, UK & Speck, JS (2013). Atom probe analysis of AlN interlayers in AlGaN/AlN/GaN heterostructures. Appl Phys Lett 102(11), 111603.10.1063/1.4798249CrossRefGoogle Scholar
Mazumder, B, Wong, MH, Hurni, CA, Zhang, JY, Mishra, UK & Speck, JS (2012). Asymmetric interfacial abruptness in N-polar and Ga-polar GaN/AlN/GaN heterostructures. Appl Phys Lett 101(9), 091601.10.1063/1.4748116CrossRefGoogle Scholar
Meisenkothen, F, Steel, EB, Prosa, TJ, Henry, KT & Kolli, RP (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101111.10.1016/j.ultramic.2015.07.009CrossRefGoogle ScholarPubMed
Menand, A & Kingham, DR (1984). Isotopic variations in field evaporation charge-state of boron ions. J Phys D 17(1), 203208.10.1088/0022-3727/17/1/026CrossRefGoogle Scholar
Menand, A & Kingham, DR (1985). Evidence for the quantum-mechanical tunnelling of boron ions. J Phys C 18(23), 45394547.10.1088/0022-3719/18/23/015CrossRefGoogle Scholar
Miller, MK, Cerezo, A, Hetherington, MG & Smith, GD (1996). Atom Probe Field Ion Microscopy. Oxford, UK: Oxford University Press.Google Scholar
Miller, MK & Forbes, RG, (2014). Atom Probe Tomography: The Local Electrode Atom Probe. Boston, MA, USA: Springer.Google Scholar
Mishra, M, Shibin, K, Aggarwal, N, Gundimeda, A & Gupta, G (2017). Electronic structure and chemical state analysis of nanoflowers decorated GaN and AlGaN/GaN heterostructure. J Alloys Compd 708, 385391.CrossRefGoogle Scholar
Morris, RJH, Cuduvally, R, Melkonyan, D, Fleischmann, C, Zhao, M, Arnoldi, L, van der Heide, P & Vandervorst, W (2018). Toward accurate composition analysis of GaN and AlGaN using atom probe tomography. J Vac Sci Technol B 36(3), 03F130.10.1116/1.5019693CrossRefGoogle Scholar
Peng, ZR, Vurpillot, F, Choi, PP, Li, YJ, Raabe, D & Gault, B (2018). On the detection of multiple events in atom probe tomography. Ultramicroscopy 189, 5460.10.1016/j.ultramic.2018.03.018CrossRefGoogle ScholarPubMed
Peng, ZR, Zanuttini, D, Gervais, B, Jacquet, E, Blum, I, Choi, PP, Raabe, D, Vurpillot, F & Gault, B (2019). Unraveling the metastability of Cn2+ (n = 2–4) clusters. J Phys Chem Lett 10(3), 581588.10.1021/acs.jpclett.8b03449CrossRefGoogle Scholar
Peralta, J, Broderick, SR & Rajan, K (2013). Mapping energetics of atom probe evaporation events through first principles calculations. Ultramicroscopy 132, 143151.10.1016/j.ultramic.2013.02.007CrossRefGoogle ScholarPubMed
Rigutti, L, Mancini, L, Hernandez-Maldonado, D, Lefebvre, W, Giraud, E, Butte, R, Carlin, JF, Grandjean, N, Blavette, D & Vurpillot, F (2016). Statistical correction of atom probe tomography data of semiconductor alloys combined with optical spectroscopy: The case of Al0.25Ga0.75N. J Appl Phys 119(10), 105704.10.1063/1.4943612CrossRefGoogle Scholar
Riley, JR, Detchprohm, T, Wetzel, C & Lauhon, LJ (2014). On the reliable analysis of indium mole fraction within InxGa1-xN quantum wells using atom probe tomography. Appl Phys Lett 104(15), 152102.10.1063/1.4871510CrossRefGoogle Scholar
Rolander, U & Andren, HO (1989). Statistical correction for pile up in the atom-probe detector system. J Phys 50(C8), C8529C8534.Google Scholar
Rolander, U & Andren, HO (1994). Study of proper conditions for quantitative atom-probe analysis. Appl Surf Sci 76(1–4), 392402.10.1016/0169-4332(94)90372-7CrossRefGoogle Scholar
Ronsheim, P, Flaitz, P, Hatzistergos, M, Molella, C, Thompson, K & Alvis, R (2008). Impurity measurements in silicon with D-SIMS and atom probe tomography. Appl Surf Sci 255(4), 15471550.CrossRefGoogle Scholar
Saxey, DW (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111(6), 473479.10.1016/j.ultramic.2010.11.021CrossRefGoogle ScholarPubMed
Stutzmann, M, Steinhoff, G, Eickhoff, M, Ambacher, O, Nebel, CE, Schalwig, J, Neuberger, R & Muller, G (2002). GaN-based heterostructures for sensor applications. Diam Relat Mater 11(3–6), 886891.10.1016/S0925-9635(02)00026-2CrossRefGoogle Scholar
Tang, F, Gault, B, Ringer, S & Cairney, JM (2010). Optimization of pulsed laser atom probe (plap) for the analysis of nanocomposite Ti-Si-N films. Ultramicroscopy 110(7), 836843.CrossRefGoogle ScholarPubMed
Wu, YF, Kapolnek, D, Ibbetson, JP, Parikh, P, Keller, BP & Mishra, UK (2001). Very-high power density AlGaN/GaN HEMTs. IEEE Trans Electron Dev 48(3), 586590.Google Scholar
Yao, L, Gault, B, Cairney, JM & Ringer, SP (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philos Mag Lett 90(2), 121129.CrossRefGoogle Scholar
Zanuttini, D, Blum, I, di Russo, E, Rigutti, L, Vurpillot, F, Douady, J, Jacquet, E, Anglade, PM & Gervais, B (2018). Dissociation of GaN2+ and AIN2+ in APT: Analysis of experimental measurements. J Chem Phys 149(13), 134311.CrossRefGoogle Scholar
Zimmermann, T, Deen, D, Cao, Y, Jena, D & Xing, HG (2008). Formation of ohmic contacts to ultra-thin channel AIN/GaN HEMTs. Phys Status Solidi C 5(6), 20302032.CrossRefGoogle Scholar