Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T21:48:20.498Z Has data issue: false hasContentIssue false

Contribution of Electron and Confocal Microscopy in the Study of Leishmania–Macrophage Interactions

Published online by Cambridge University Press:  01 October 2004

Birgitta Rasmusson
Affiliation:
Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
Albert Descoteaux
Affiliation:
Institute National de la Recherche Scientifique–Institut Armand-Frappier, Université du Québec, Laval, QC, H7V 1B7, Canada
Get access

Abstract

Promastigotes of the protozoan parasite genus Leishmania are inoculated into a mammalian host when an infected sand fly takes a bloodmeal. Following their opsonization by complement, promastigotes are phagocytosed by macrophages. There, promastigotes differentiate into amastigotes, the form of the parasite that replicates in the phagolysosomal compartments of host macrophages. Although the mechanisms by which promastigotes survive the microbicidal consequence of phagocytosis remain, for the most part, to be elucidated, evidence indicates that glycoconjugates play a role in this process. One such glycoconjugate is lipophosphoglycan, an abundant promastigote surface glycolipid. Using quantitative electron and confocal laser scanning microscopy approaches, evidence was provided that L. donovani promastigotes inhibit phagolysosome biogenesis in a lipophosphoglycan-dependent manner. This inhibition correlates with an accumulation of periphagosomal F-actin, which may potentially form a physical barrier that prevents L. donovani promastigote-containing phagosomes from interacting with endocytic vacuoles. Inhibition of phagosome maturation may constitute a strategy to provide an environment propitious to the promastigote-to-amastigote differentiation.

Type
Feature Articles
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aderem, A. & Underhill, D.M. (1999). Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17, 593623.Google Scholar
Alexander, J. & Russell, D.G. (1992). The interaction of Leishmania species with macrophages. Adv Parasitol 31, 175254.Google Scholar
Alexander, J. & Vickerman, K. (1975). Fusion of host cell secondary lysosomes with the parasitophorous vacuoles of Leishmania mexicana-infected macrophages. J Protozool 22, 502508.Google Scholar
Allen, L.A. & Aderem, A. (1996). Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 184, 627637.Google Scholar
Allen, L.H. & Aderem, A. (1995). A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med 182, 829840.Google Scholar
Castellano, F., Chavrier, P., & Caron, E. (2001). Actin dynamics during phagocytosis. Semin Immunol 13, 347355.Google Scholar
Chang, K.P., Chaudhuri, G., & Fong, D. (1990). Molecular determinants of Leishmania virulence. Annu Rev Microbiol 44, 499529.Google Scholar
Chang, K.P. & Dwyer, D.M. (1976). Multiplication of a human parasite (Leishmania donovani) in phagolysosomes of hamster macrophages in vitro. Science 193, 678680.Google Scholar
Chimini, G. & Chavrier, P. (2000). Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2, E191196.Google Scholar
Courret, N., Frehel, C., Gouhier, N., Pouchelet, M., Prina, E., Roux, P., & Antoine, J.C. (2002). Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. J Cell Sci 115, 23032316.Google Scholar
Dermine, J.F., Duclos, S., Garin, J., St-Louis, F., Rea, S., Parton, R.G., & Desjardins, M. (2001). Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem 276, 1850718512.Google Scholar
Descoteaux, A. & Turco, S.J. (1999). Glycoconjugates in Leishmania infectivity. Biochim Biophys Acta 1455, 341352.Google Scholar
Descoteaux, A. & Turco, S.J. (2002). Functional aspects of the Leishmania donovani lipophosphoglycan during macrophage infection. Microbes Infect 4, 975981.Google Scholar
Desjardins, M. (1995). Biogenesis of phagolysosomes: The kiss and run hypothesis. Trends Cell Biol 5, 183186.Google Scholar
Desjardins, M. & Descoteaux, A. (1997). Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J Exp Med 185, 20612068.Google Scholar
Greenberg, S., El Khoury, J., Di Virgilio, F., Kaplan, E.M., & Silverstein, S.C. (1991). Ca(2+)-independent F-actin assembly and disassembly during Fc receptor-mediated phagocytosis in mouse macrophages. J Cell Biol 113, 757767.Google Scholar
Griffiths, G., Lucocq, J.M., & Mayhew, T.M. (2001). Electron microscopy applications for quantitative cellular microbiology. Cell Microbiol 3, 659668.Google Scholar
Holm, Å., Tejle, K., Magnusson, K.E., Descoteaux, A., & Rasmusson, B. (2001). Leishmania donovani lipophosphoglycan causes periphagosomal actin accumulation: Correlation with impaired translocation of PKCa and defective phagosome maturation. Cell Microbiol 3, 439447.Google Scholar
Ilg, T. (2000). Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. EMBO J 19, 19531962.Google Scholar
Lang, T., Ave, P., Huerre, M., Milon, G., & Antoine, J.C. (2000). Macrophage subsets harbouring Leishmania donovani in spleens of infected BALB/c mice: Localization and characterization. Cell Microbiol 2, 415430.Google Scholar
Lang, T., De, C.C., Frehel, C., Hellio, R., Metezeau, P., Leao, S., De, S., & Antoine, J.C. (1994a). Distribution of MHC class I and of MHC class II molecules in macrophages infected with Leishmania amazonensis. J Cell Sci 107, 6982.Google Scholar
Lang, T., Hellio, R., Kaye, P.M., & Antoine, J.C. (1994b). Leishmania donovani-infected macrophages: Characterization of the parasitophorous vacuole and potential role of this organelle in antigen presentation. J Cell Sci 107, 21372150.Google Scholar
McNeely, T.B. & Turco, S.J. (1990). Requirement of lipophosphoglycan for intracellular survival of Leishmania donovani within human monocytes. J Immunol 144, 27452750.Google Scholar
Miao, L., Stafford, A., Nir, S., Turco, S.J., Flanagan, T.D., & Epand, R.M. (1995). Potent inhibition of viral fusion by the lipophosphoglycan of Leishmania donovani. Biochemistry 34, 46764683.Google Scholar
Pimenta, P.F., Saraiva, E.M., Rowton, E., Modi, G.B., Garraway, L.A., Beverley, S.M., Turco, S.J., & Sacks, D.L. (1994). Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci USA 91, 91559156.Google Scholar
Puentes, S.M., Sacks, D.L., Da Silva, R.P., & Joiner, K.A. (1988). Complement binding by two developmental stages of Leishmania major promastigotes varying in expression of a surface lipophosphoglycan. J Exp Med 167, 887902.Google Scholar
Sacks, D.L. (1989). Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 69, 100103.Google Scholar
Sacks, D.L., Modi, G., Rowton, E., Spath, G., Epstein, L., Turco, S.J., & Beverley, S.M. (2000). The role of phosphoglycans in Leishmania–sand fly interactions. Proc Natl Acad Sci USA 97, 406411.Google Scholar
Scianimanico, S., Desrosiers, M., Dermine, J.-F., Méresse, S., Descoteaux, A., & Desjardins, M. (1999). Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cell Microbiol 1, 1932.Google Scholar
Spath, G.F., Epstein, L., Leader, B., Singer, S.M., Avila, H.A., Turco, S.J., & Beverley, S.M. (2000). Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc Natl Acad Sci USA 97, 92589263.Google Scholar
St-Denis, A., Caouras, V., Gervais, F., & Descoteaux, A. (1999). A role for PKC-a in the control of infection by intracellular pathogens in macrophages. J Immunol 163, 55055511.Google Scholar
Tolson, D.L., Turco, S.J., & Pearson, T.W. (1990). Expression of a repeating phosphorylated disaccharide lipophosphoglycan epitope on the surface of macrophages infected with Leishmania donovani. Infect Immun 58, 35003507.Google Scholar
Turco, S.J. & Descoteaux, A. (1992). The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 46, 6594.Google Scholar
Turco, S.J., Spath, G.F., & Beverley, S.M. (2001). Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol 17, 223226.Google Scholar
Veras, P.S., De Chastellier, C., Moreau, M.F., Villiers, V., Thibon, M., Mattei, D., & Rabinovitch, M. (1994). Fusion between large phagocytic vesicles: Targeting of yeast and other particulates to phagolysosomes that shelter the bacterium Coxiella burnetii or the protozoan Leishmania amazonensis in Chinese hamster ovary cells. J Cell Sci 107, 30653076.Google Scholar