Skip to main content Accessibility help

Comparing the Consistency of Atom Probe Tomography Measurements of Small-Scale Segregation and Clustering Between the LEAP 3000 and LEAP 5000 Instruments

  • Tomas L. Martin (a1), Andrew J. London (a1), Benjamin Jenkins (a1), Sarah E. Hopkin (a1), James O. Douglas (a1), Paul D. Styman (a2), Paul A. J. Bagot (a1) and Michael P. Moody (a1)...


The local electrode atom probe (LEAP) has become the primary instrument used for atom probe tomography measurements. Recent advances in detector and laser design, together with updated hit detection algorithms, have been incorporated into the latest LEAP 5000 instrument, but the implications of these changes on measurements, particularly the size and chemistry of small clusters and elemental segregations, have not been explored. In this study, we compare data sets from a variety of materials with small-scale chemical heterogeneity using both a LEAP 3000 instrument with 37% detector efficiency and a 532-nm green laser and a new LEAP 5000 instrument with a manufacturer estimated increase to 52% detector efficiency, and a 355-nm ultraviolet laser. In general, it was found that the number of atoms within small clusters or surface segregation increased in the LEAP 5000, as would be expected by the reported increase in detector efficiency from the LEAP 3000 architecture, but subtle differences in chemistry were observed which are attributed to changes in the way multiple hit detection is calculated using the LEAP 5000.


Corresponding author

* Corresponding author.


Hide All
Amouyal, Y. & Seidman, D.N. (2012). Atom-probe tomography of nickel-based superalloys with green or ultraviolet lasers: A comparative study. Microsc Microanal 18(5), 971981.
Bostel, A., Blavette, D., Menand, A. & Sarrau, J.M. (1989). Toward a tomographic atom-probe. Colloq Phys 50(C8), 501506.
Bunton, J.H., Olsen, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.
Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59(6), 862866.
Cerezo, A., Smith, G.D.W. & Waugh, A.R. (1984). The FIM100 – Performance of a commercial atom probe system. J Phys Colloq 45, C9-329C9-335.
Donkelaar, J.V., Yang, C., Alves, A.D.C., Mccallum, J.C., Hougaard, C., Johnson, B.C., Hudson, F.E., Dzurak, A.S., Morello, A. & Spemann, D. (2015). Single atom devices by ion implantation. J Phys Condens Matter 27, 154204.
Douglas, J.O., Bagot, P.A.J., Johnson, B.C., Jamieson, D.N. & Moody, M.P. (2016). Optimisation of sample preparation and analysis conditions for atom probe tomography characterisation of low concentration surface species. J Semicond Sci Technol 31, 084004.
Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G. & Simmons, M.Y. (2012). A single-atom transistor. Nat Nanotechnol 7(4), 242246.
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy, Springer Series in Materials Science, 160. New York: Springer.
Gordon, L.M., Tran, L. & Joester, D. (2012). Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano 6(12), 1066710675.
Hyde, J.M., Marquis, E.A., Wilford, K.B. & Williams, T.J. (2011). A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 11(6), 440447.
Inoue, K., Yano, A., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y. & Hasegawa, M. (2009). Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109(12), 14791484.
Jagutzki, O., Cerezo, A., Czasch, A., Dörner, R., Hattaß, M., Huang, M., Mergel, V., Spillmann, U., Ullmann-Pfleger, K., Weber, T., Schmidt-Böcking, H. & Smith, G.D.W. (2002). Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans Nucl Sci 49, 24772483.
Kane, B.E. (1998). A silicon-based nuclear spin quantum computer. Nature 393, 133137.
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M. & Bajikar, S.S. (1996). On the many advantages of local-electrode atom probes. Ultramicroscopy 62, 2942.
Kelly, T.F. & Larson, D.J. (2000). Local electrode atom probes. Mater Charact 44(1-2), 5985.
Kinno, T., Akutsu, H., Tomita, M., Kawanaka, S., Sonehara, T., Hokazono, A., Renaud, L., Martin, I., Benbalagh, R., Salle, B. & Takeno, S. (2012). Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography. Appl Surf Sci 259, 726730.
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P. & Kelly, T.F. (2013). Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer.
Li, T., Bagot, P.A.J., Marquis, E.A., Tsang, S.C.E. & Smith, G.D.W. (2012). Characterization of oxidation and reduction of Pt-Ru and Pt-Rh-Ru alloys by atom probe tomography and comparison with Pt-Rh. J Phys Chem C 116(33), 1763317640.
Marceau, R.K.W., Choi, P. & Raabe, D. (2013). Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. Ultramicroscopy 132, 239247.
Meisenkothen, F., Steel, E.B., Prosa, T.J., Henry, K.T. & Prakash Kolli, R. (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101111.
Meisnar, M., Moody, M.P. & Lozano-Perez, S. (2015). Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels. Corros Sci 98, 661671.
Moody, M.P., Gault, B., Stephenson, L.T., Marceau, R.K.W., Powles, R.C., Ceguerra, A.V., Breen, A.J. & Ringer, S.P. (2011). Lattice rectification in atom probe tomography: Toward true three-dimensional atomic microscopy. Microsc Microanal 17(2), 226239.
Muller, E.W., Panitz, J.A. & Mcclane, S.B. (1968). The atom-probe field ion microscope. Rev Sci Instrum 39, 8386.
Panitz, J.A. (1973). The 10cm atom probe. Rev Sci Instrum 44(8), 10341038.
Pedrazzini, S., Child, D.J., West, G., Doak, S.S., Hardy, M.C., Moody, M.P. & Bagot, P.A.J. (2016). Oxidation behaviour of a next generation polycrystalline Mn containing Ni-based superalloy. Scripta Mater 113, 5154.
Prosa, T.J., Geiser, B.P., Lawrence, D.J., Olsen, J.D. & Larson, D.J. (2014). Developing detection efficiency standards for atom probe tomography. Proceedings of SPIE 9173, Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics and Semiconductors VIII, 917307. San Diego, CA, USA.
Robertson, C., Panigrahi, B.K., Balaji, S., Kataria, S., Serruys, Y., Mathon, M.-H. & Sundar, C.S. (2012). Particle stability in model ODS steel irradiated up to 100 dpa at 600°C: TEM and nano-indentation investigation. J Nucl Mater 426, 240246.
Rolander, U. & Andrén, H.-O. (1989). Statistical correction for pile-up in the atom-probe detector system. J Phys Colloq 50, C8-529C8-534.
Santhanagopalan, D., Schrieber, D.K., Perea, D.E., Martens, R.L., Janssen, Y., Khalifah, P. & Meng, Y.S. (2015). Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy 148, 5766.
Steiner, T., Meka, S.R., Rheingans, B., Boschoff, E., Waldenmaier, T., Guma, Y., Martin, T.L., Bagot, P.A.J., Moody, M.P. & Mittemeijer, E.J. (2016). Continuous and discontinuous precipitation in Fe-1 at.% Cr-1 at.% Mo alloy upon nitriding; crystal structure and composition of ternary nitrides. Philos Mag 96(15), 15091537.
Styman, P.D., Hyde, J.M., Wilford, K., Morley, A. & Smith, G.D.W. (2012). Precipitation in long term thermally aged high copper, high nickel model RPV steel welds. Prog Nucl Energ 57, 8692.
Thompson, K., Lawrence, D.J., Larson, D.J., Olsen, J.D., Kelly, T.F. & Gorman, B. (2007). In-situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.
Thuvander, M., Kvist, A., Johnson, L.J.S., Weidow, J. & Andrén, H.-O. (2013). Reduction of multiple hits in atom probe tomography. Ultramicroscopy 132, 8185.
Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J., Clifton, P.H., Kelly, T.F., Wilde, S.A., Moser, D.E. & Spicuzza, M.J. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7, 219223.


Related content

Powered by UNSILO

Comparing the Consistency of Atom Probe Tomography Measurements of Small-Scale Segregation and Clustering Between the LEAP 3000 and LEAP 5000 Instruments

  • Tomas L. Martin (a1), Andrew J. London (a1), Benjamin Jenkins (a1), Sarah E. Hopkin (a1), James O. Douglas (a1), Paul D. Styman (a2), Paul A. J. Bagot (a1) and Michael P. Moody (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.