Skip to main content Accessibility help

Comparative Assessment of Oral Mesenchymal Stem Cells Isolated from Healthy and Diseased Tissues

  • Emöke Páll (a1) (a2), Adrian Florea (a3), Olga Soriţău (a4), Mihai Cenariu (a1), Adrian S. Petruţiu (a2) and Alexandra Roman (a2)...


The aim of the present study was to isolate human mesenchymal stem cells (MSCs) from palatal connective and periodontal granulation tissues and to comparatively evaluate their properties. MSCs were isolated using the explant culture method. Adherence to plastic, specific antigen makeup, multipotent differentiation potential, functionality, and ultrastructural characteristics were investigated. The frequency of colony-forming unit fibroblasts for palatal-derived mesenchymal stem cells (pMSCs) was significantly higher than that of granulation tissue-derived mesenchymal stem cells (gtMSCs). A significantly higher population doubling time and lower migration potential were recorded for gtMSCs than for pMSCs. Both cell lines were positive for CD105, CD73, CD90, CD44, and CD49f, and negative for CD34, CD45, and HLA-DR, but the level of expression was different. MSCs from both sources were relatively uniform in their ultrastructure. Generally, both cell lines possessed a large, irregular-shaped euchromatic nucleus, and cytoplasm rich in mitochondria, lysosomes, and endoplasmic reticulum. The periphery of the plasma membrane displayed many small filopodia. MSCs from both cell lines were successfully differentiated into osteogenic, adiopogenic, and chondrogenic lineages. Both healthy and diseased tissues may be considered as valuable sources of MSCs for regenerative medicine owing to the high acceptance and fewer complications during harvesting.


Corresponding author

* Corresponding authors.;


Hide All
Al Battah, F., De Kock, J., Vanhaecke, T. & Rogiers, V. (2011). Current status of human adipose-derived stem cells: Differentiation into hepatocyte-like cells. Sci World J 11, 15681581.
Alongi, D.J., Yamaza, T., Song, Y., Fouad, A.F., Romberg, E.E., Shi, S., Tuan, R.S. & Huang, G.T. (2010). Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5, 617631.
Armitage, G.C. (1999). Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4, 16.
Bakopoulou, A., Leyhausen, G., Volk, J., Tsiftsoglou, A., Garefis, P., Koidis, P. & Geurtsen, W. (2011). Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 88, 130141.
Bieback, K., Kern, S., Klüter, H. & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22, 625634.
Bobis, S., Jarocha, D. & Majka, M. (2006). Mesenchymal stem cells: Characteristics and clinical applications. Folia Histochem Cytobiol 44, 215230.
Boiret, N., Rapatel, C., Veyrat-Masson, R., Guillouard, L., Guérin, J.-J., Pigeon, P., Descamps, S., Boisgard, S. & Berger, M.G. (2005). Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol 33, 219225.
Caplan, A.I. (1991). Mesenchymal stem cells. J Orthop Res 9, 641650.
Castro-Malaspina, H., Gay, R.E., Resnick, G., Kapoor, N., Meyers, P., Chiarieri, D., Mckenzie, S., Broxmeyer, H.E. & Moore, M.A. (1980). Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56, 289301.
Chen, F.M., Sun, H.H., Lu, H. & Yu, Q. (2012). Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials 33, 63206344.
Chen, S.C., Marino, V., Gronthos, S. & Bartold, P.M. (2006). Location of putative stem cells in human periodontal ligament. J Periodontal Res 41, 547553.
Csaki, C., Matis, U., Mobasheri, A., Ye, H. & Shakibaei, M. (2007). Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: A biochemical, morphological and ultrastructural study. Histochem Cell Biol 128, 507520.
Danisovic, L., Varga, I., Polak, S., Ulicna, M., Bohmer, D. & Vojtassak, J. (2008). Morphology of in vitro expanded human muscle—derived stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152, 235238.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.J. & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315317.
Estrela, C., De Alencar, A.H.G., Kitten, G.T., Vencio, E.F. & Gava, E. (2011). Mesenchymal stem cells in the dental tissues: Perspectives for tissue regeneration. Braz Dent J 22, 9198.
Florea, A. & Crăciun, C. (2013). Bee venom induced in vivo ultrastructural reactions of cells involved in the bone marrow erythropoiesis and of circulating red blood cells. Microsc Microanal 19, 393405.
Fournier, B.P., Ferre, F.C., Couty, L., Lataillade, J.J., Gourven, M., Naveau, A., Coulomb, B., Lafont, A. & Gogly, B. (2010). Multipotent progenitor cells in gingival connective tissue. Tissue Eng Part A 16, 28912899.
Gittel, C., Brehm, W., Burk, J., Juelke, H., Staszyk, C. & Ribitsch, I. (2013). Isolation of equine multipotent mesenchymal stromal cells by enzymatic tissue digestion or explant technique: Comparison of cellular properties. BMC Vet Res 9, 221.
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. New York, NY: Springer Publishing Co.
Gronthos, S., Mankani, M., Brahim, J., Robey, P.G. & Shi, S. (2000). Postnatal human dental pulp stem cells DPSC in vitro and in vivo. Proc Natl Acad Sci USA 97, 1362513630.
Hayat, M.A. (2000). Principles and Techniques of Electron Microscopy—Biological Applications, 4th ed. Cambridge, UK: Cambridge University Press.
Huang, G.T.-J., Gronthos, S. & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources, their biology and role in regenerative medicine. J Dent Res 88, 792806.
Hung, T.Y., H.C., Lin, Chan, Y.J. & Yuan, K. (2012). Isolating stromal stem cells from periodontal granulation tissues. Clin Oral Investig 16, 11711180.
Hürzeler, M.B. & Weng, D. (1999). A single-incision technique to harvest subepithelial connective tissue grafts from the palate. Int J Periodontics Restorative Dent 19, 279287.
Hyder, A. (2005). Effect of the pancreatic digestion with liberase versus collagenase on the yield, function and viability of neonatal rat pancreatic islets. Cell Biol Int 29, 831834.
Hynes, K., Menicanin, D., Gronthos, S. & Bartold, P.M. (2012). Clinical utility of stem cells for periodontal regeneration. Periodontol 2000 59, 203227.
Jang, S., Cho, H.H., Cho, Y.B., Park, J.S. & Jeong, H.S. (2010). Functional neural differentiation of human adipose tissue derived stem cells using bFGF and forskolin. BMC Cell Biol 11, 2530.
Karaoz, E., Aksoy, A., Ayhan, S., Sariboyaci, A.E., Kaymaz, F. & Kasap, M. (2009). Characterization of mesenchymal stem cells from rat bone marrow: Ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol 132, 533546.
Ke, C., Chen, J., Guo, Y., Chen, Z.W. & Cai, J. (2015). Migration mechanism of mesenchymal stem cells studied by QD/NSOM. Biochim Biophys Acta 1848, 859868.
Kirkland, O. (1931). The suppurative periodontal pus pocket; its treatment by the modified flap operation. J Am Dent Assoc 18, 14621470.
Latif, N., Sarathchandra, P., Thomas, P.S., Antoniw, J., Batten, P., Chester, A.H., Taylor, P.M. & Yacoub, M.H. (2007). Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J Heart Valve Dis 16, 5666.
Lee, R.H., Seo, M.J., Pulin, A.A., Gregory, C.A., Ylostalo, J. & Prockop, D.J. (2009). The CD34 like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 113, 816826.
Lencová, E., Broukal, Z. & Dusková, J. (2006). Psychosocial, behavioural and oral health indicators—review of the literature. Prague Med Rep 107, 305316.
Liao, J., Al Shahrani, M., Al-Habib, M., Tanaka, T. & Huang, G.T. (2011). Cells isolated from inflamed periapical tissue express mesenchymal stem cell markers and are highly osteogenic. J Endod 37, 12171224.
Lin, C.S., Xin, Z.C., Dai, J. & Lue, T.F. (2013). Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol Histopathol 28, 11091116.
Lu, H., Xie, C., Zhao, Y.M. & Chen, F.M. (2013). Translational research and therapeutic applications of stem cell transplantation in periodontal regenerative medicine. Cell Transplant 22, 205229.
Lv, F.J., Tuan, R.S., Cheung, K.M. & Leung, V.Y. (2014). Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells 32, 14081419.
Machado, E., Fernandes, M.H. & De Sousa Gomes, P. (2012). Dental stem cells for craniofacial tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol 113, 728733.
Marrelli, M., Paduano, F. & Tatullo, M. (2013). Cells isolated from human periapical cysts express mesenchymal stem cell-like properties. Int J Biol Sci 9, 10701078.
Mensing, N., Gasse, H., Hambruch, N., Haeger, J.-D., Pfarrer, C. & Staszyk, C. (2011). Isolation and characterization of multipotent mesenchymal stromal cells from the gingiva and the periodontal ligament of the horse. BMC Vet Res 7, 42.
Mitrano, T.I., Grob, M.S., Carrion, F., Nova-Lamperti, E., Luz, P.A., Fierro, F.S., Quintero, A., Chaparro, A. & Sanz, A. (2010). Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol 81, 917925.
Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L.W., Robey, P.G. & Shi, S. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 13, 58075812.
Mogilner, A. & Keren, K. (2009). The shape of motile cells. Curr Biol 15, R762R771.
Morsczeck, C., Gotz, W., Schierholz, J., Zeilhofer, F., Kuhn, U., Mohl, C., Sippel, C. & Hoffmann, K.H. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24, 155165.
Nassiri, F., Cusimano, M.D., Scheithauer, B.W., Rotondo, F., Fazio, A., Yousef, G.M., Syro, L.V., Kovacs, K. & Lloyd, R.V. (2011). Endoglin (CD105): A review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 31, 22832290.
Nystedt, J., Anderson, H., Tikkanen, J., Pietilä, M., Hirvonen, T., Takalo, R., Heiskanen, A., Satomaa, T., Natunen, S., Lehtonen, S., Hakkarainen, T., Korhonen, M., Laitinen, S., Valmu, L. & Lehenkari, P. (2013). Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells 31, 317326.
Orciani, M., Mariggiò, M.A., Morabito, C., Di Benedetto, G. & Di Primio, R. (2010). Functional characterization of calcium-signaling pathways of human skin-derived mesenchymal stem cells. Skin Pharmacol Physiol 23, 124132.
Park, J.C., Kim, J.M., Jung, I.H., Kim, J.C., Choi, S.H., Cho, C.S. & Kim, C.S. (2011). Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: In vitro and in vivo evaluations. J Clin Periodontol 38, 721731.
Pascucci, L., Mercati, F., Marini, C., Ceccarelli, P., Dall’aglio, C., Pedini, V. & Gargiulo, A. (2010). Ultrastructural morphology of equine adipose-derived mesenchymal stem cells. Histol Histopathol 25, 12771285.
Pasquinelli, G., Tazzari, P., Ricci, F., Vaselli, C., Buzzi, M., Conte, R., Orrico, C., Foroni, L., Stella, A., Alviano, F., Bagnara, G.P. & Lucarelli, E. (2007). Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta. Ultrastruct Pathol 31, 2331.
Perry, B.C., Zhou, D., Wu, X., Yang, F.C., Byers, M.A., Chu, T.M., Hockema, J.J., Woods, E.J. & Goebel, W.S. (2008). Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 14, 149156.
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. & Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143147.
Roman, A., Soancă, A., Florea, A. & Páll, E. (2013). In vitro characterization of multipotent mesenchymal stromal cells isolated from palatal subepithelial tissue grafts. Microsc Microanal 19, 370380.
Ronay, V., Belibasakis, G.N., Attin, T., Schmidlin, P.R. & Bostanci, N. (2014). Expression of embryonic stem cell markers and osteogenic differentiation potential in cells derived from periodontal granulation tissue. Cell Biol Int 38, 179186.
Ruedel, A., Hofmeister, S. & Bosserhoff, A.K. (2013). Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells. Int J Clin Exp Pathol 6, 30423048.
Russell, K.C., Phinney, D.G., Lacey, M.R., Barrilleaux, B.L., Meyertholen, K.E. & O’connor, K.C. (2010). In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28, 788798.
Sanz, A.R., Carrión, F.S. & Chaparro, A.P. (2015). Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering. Periodontol 2000 67, 251267.
Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Robey, P.G., Wang, C.Y. & Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149155.
Sonoyama, W., Liu, Y., Fang, D., Yamaza, T., Seo, B.M., Zhang, C., Liu, H., Gronthos, S., Wang, C.-Y., Shi, S. & Wang, S. (2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1, e79.
Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M. & Marini, F. (2008). Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15, 730738.
Sun, T., Sun, B.C., Ni, C.S., Zhao, X.L., Wang, X.H., Qie, S., Zhang, D.F., Gu, Q., Qi, H. & Zhao, N. (2008). Pilot study on the interaction between B16 melanoma cell-line and bone-marrow derived mesenchymal stem cells. Cancer Lett 263, 3543.
Totey, S. & Pal, R. (2009). Adult stem cells: A clinical update. Stem Cells 4, 105121.
Ullah, I., Baregundi Subbarao, R. & Rho, G.J. (2015). Human mesenchymal stem cells—current trends and future prospective. Biosci Rep 35, e00191.
Wang, H.L., Greenwell, H., Fiorellini, J., Giannobile, W., Offenbacher, S., Salkin, L., Townsend, C., Sheridan, P. & Genco, R.J., Research, Science and Therapy Committee (2005). Periodontal regeneration. J Periodontol 76, 16011622.
Watt, I.M. (2003). The Principles and Practice of Electron Microscopy. Cambridge, UK: Cambridge University Press.
Wennstrom, J.L., Heijl, L. & Lindhe, J. (2008). Periodontal surgery: Access therapy. In Clinical Periodontology and Implant Therapy (5th ed., chapter 25, Lindhe, J., Lang, N. P., & Karring, T (Eds.), pp. 783822). Blackwell Munksgaard: Oxford.
Widera, D., Grimm, W.D., Moebius, J.M., Mikenberg, I., Piechaczek, C., Gassmann, G., Wolff, N.A., Thevenod, F., Kaltschmidt, C. & Kaltschmidt, B. (2007). Highly efficient neural differentiation of human somatic stem cells, isolated by minimally invasive periodontal surgery. Stem Cells Dev 16, 447460.
Williams, J.T., Southerland, S.S., Souza, J., Calcutt, A.F. & Cartledge, R.G. (1999). Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65, 2226.
Wuchter, P., Boda-Heggemann, J., Straub, B.K., Grund, C., Kuhn, C., Krause, U., Seckinger, A., Peitsch, W.K., Spring, H., Ho, A.D. & Franke, W.W. (2007). Processus and recessus adhaerentes: Giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 328, 499514.
Yazid, F.B., Gnanasegaran, N., Kunasekaran, W., Govindasamy, V. & Musa, S. (2014). Comparison of immunomodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig 18, 21032112.
Yu, K.R., Yang, S.R., Jung, J.W., Kim, H., Ko, K., Han, D.W., Park, S.B., Choi, S.W., Kang, S.K., Schöler, H. & Kang, K.S. (2012). CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30, 876887.
Yu, S., Diao, S., Wang, J., Ding, G., Yang, D. & Fan, Z. (2014). Comparative analysis of proliferation and differentiation potentials of stem cells from inflamed pulp of deciduous teeth and stem cells from exfoliated deciduous teeth. Biomed Res Int 2014, 930907.
Zheng, W., Wang, S., Ma, D., Tang, L., Duan, Y. & Jin, Y. (2009). Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment. Tissue Eng Part A 15, 23632371.
Zhidkova, O.V., Petrov, N.S. & Popov, B.V. (2013). Production and characteristics of the growth and marker properties of mesenchymal stem cells of urinary bladder. Zh Evol Biokhim Fiziol 49, 6777.
Zhu, H., Mitsuhashi, N., Klein, A., Barsky, L.W., Weinberg, K., Barr, M.L., Demetriou, A. & Wu, G.D. (2006). The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24, 928935.
Zuk, P.A., Zhu, M., Ashijian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. & Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 42794295.
Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. & Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: Implications for cell based therapies. Tissue Eng 7, 211228.


Type Description Title
Supplementary materials

Páll supplementary material
Figure S1

 Unknown (6.3 MB)
6.3 MB

Comparative Assessment of Oral Mesenchymal Stem Cells Isolated from Healthy and Diseased Tissues

  • Emöke Páll (a1) (a2), Adrian Florea (a3), Olga Soriţău (a4), Mihai Cenariu (a1), Adrian S. Petruţiu (a2) and Alexandra Roman (a2)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed