Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:19:15.563Z Has data issue: false hasContentIssue false

Characterization of Defects and Surface Structures in Microporous Materials by HRTEM, HRSEM, and AFM

Published online by Cambridge University Press:  17 March 2004

Gema González
Affiliation:
Centro Tecnológico, Laboratorio de Materiales, Instituto Venezolano de Investigaciones Científicas, Apdo. 21827, Caracas 1020 A, Venezuela
Werner Stracke
Affiliation:
Institut fuer Medizinische Physik und Biophysik, Universitaetsklinikum, Universitaet Muenster, Robert-Koch-Str. 31, D-48149 Muenster, Germany
Zoraya Lopez
Affiliation:
Centro Tecnológico, Laboratorio de Materiales, Instituto Venezolano de Investigaciones Científicas, Apdo. 21827, Caracas 1020 A, Venezuela
Ulrike Keller
Affiliation:
Institut fuer Medizinische Physik und Biophysik, Universitaetsklinikum, Universitaet Muenster, Robert-Koch-Str. 31, D-48149 Muenster, Germany
Andrea Ricker
Affiliation:
Institut fuer Medizinische Physik und Biophysik, Universitaetsklinikum, Universitaet Muenster, Robert-Koch-Str. 31, D-48149 Muenster, Germany
Rudolf Reichelt
Affiliation:
Institut fuer Medizinische Physik und Biophysik, Universitaetsklinikum, Universitaet Muenster, Robert-Koch-Str. 31, D-48149 Muenster, Germany
Get access

Abstract

High-resolution transmission (HRTEM) and high-resolution scanning electron microscopy as well as atomic force microscopy (AFM), X-ray diffraction, and electron diffraction were used for studying the zeolites MFI, MEL, and the MFI/MEL intergrowth system. All three zeolites consisted of individual particles having a size in the range of approximately 0.5 μm to 5 μm. The particle habits varied from rather cubelike to almost spherelike with many intermediate habits. Typically, the particles of these three zeolites were assembled by many individual blocks that differed in the dimension from about 25 nm to 140 nm as well as in the shape from very frequently almost rectangular (for MFI, MEL, and MFI/MEL) to sometimes roundish or irregular habits (mainly for MFI/MEL). An estimate shows that some 104 up to more than 106 densely packed blocks typically may assemble each individual zeolite particle or, related to the corresponding unit cell dimension, about 108 up to 1010 unit cells. The fine surface structure of zeolite particles was terracelike with steps between adjacent terraces typically in the range of 20 nm to 60 nm; the minimum step measured was approximately 4 nm. A detailed study of the surface topography was performed by AFM, detecting organic molecules at the block intersections. The presence of topological defects was observed by HRTEM and electron diffraction.

Type
Papers from the InterAmerican Congress on Electron Microscopy
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M.W., Agger, J.R., Hanif, N., Terasaki, O., & Ohsuna, T. (2001a). Crystal growth in framework materials. Sol State Sci 3, 809819.Google Scholar
Anderson, M.W., Hanif, N., Agger, J.R., Chen, C.-Y., & Zones, S.I. (2001b). Atomic force microscopy (AFM) used to relate surface topography growth mechanisms in SSZ-42. In Proc. 13th Int. Zeolite Conference, Studies in Surface Science and Catalysis 135. Zeolites and Mesoporous Materials at the Dawn of the 21st Century, Galarneau, A., Di Renzo, F., Fajula, F. & Vedrine, J. (Eds.), pp. 141149, Montpellier, France: Elsevier.
Baerlocher, C., Meier, W.M., & Olson, D.H. (2001). Atlas of zeolite framework structures. Amsterdam: Elsevier.
Binder, G., Scandella, L., Schuhmacher, A., Kruse, N., & Prins, R. (1996). Microtopographic and molecular scale observations of zeolite surface structures: Atomic force microscopy on natural heulandite. Zeolites 16, 26.Google Scholar
Binnig, G., Quate, C.F., & Gerber, C. (1986). Atomic force microscopy. Phys Rev Lett 56, 930933.CrossRefGoogle Scholar
Bittermann, A.G., Jacobi, S., Chi, L.F., Fuchs, H., & Reichelt, R. (2001). Contrast studies on organic monolayers of different molecular packing in FESEM and their correlation with SFM data. Langmuir 17, 18721877.CrossRefGoogle Scholar
González, G., Lopez, Z., & Reichelt, R. (2001). Defects study in microporous materials by HRSEM, HRTEM and diffraction techniques. In Proc. 13th Int. Zeolite Conference, Studies in Surface Science and Catalysis 135. Zeolites and Mesoporous Materials at the Dawn of the 21st Century, Galarneau, A., Di Renzo, F., Fajula, F. & Vedrine, J. (Eds.), pp. 351358. Montpellier, France: Elsevier.
IZA Structure Commission. (2000). Database of zeolite structures. http://www.zeolites.ethz.ch/Zeolites/DisordStructures.htm.
Janssen, A.H., Koster, A.J., & De Jong, K.P. (2002). On the shape of the mesopores in zeolite Y: A three-dimensional transmission electron microscopy study combined with texture analysis. J Phys Chem B 106, 1190511909.Google Scholar
Kokotailo, G.T., Chu, P., Lawton, S.T., & Meier, W.M. (1978a). Synthesis and structure of synthetic zeolite ZSM-11. Nature 275, 119120.Google Scholar
Kokotailo, G.T., Lawton, S.T., Oslon, D.H., & Meier, W.M. (1978b). Structure of synthetic zeolite ZSM-5. Nature 272, 437438.Google Scholar
Kokotailo, G.T. & Meier, W.M. (1980). Pentasil family of high silica crystalline materials. In The properties and applications of zeolites, Townsend, R.P. (Ed.), pp. 133139. London: The Chemical Society.
Koster, A.J., Grimm, R., Typke, D., Hegerl, R., Stochek, A., Walz, J., & Baumeister, W. (1997). Perspectives of molecular and cellular electron tomography. J Struct Biol 120, 276308.CrossRefGoogle Scholar
Lin, A.C. & Goh, M.C. (2002). A novel sample holder allowing atomic force microscopy on transmission electron microscopy specimen grids: Repetitive, direct correlation between AFM and TEM images. J Microsc 205, 205208.CrossRefGoogle Scholar
Millward, G.R., Ramadas, S., Thomas, J.M., & Barlow, M.T. (1983). Evidence for semi-regularly ordered sequences of mirror and inversion symmetry planes in ZSM-5/ZSM-11 shape-selective zeolitic catalysts. J Chem Soc Faraday Trans 79, 10751082.Google Scholar
Nagy, J.B., Gabelica, Z., & Derouane, E.G. (1983). Position and configuration of the guest organic molecules within the framework of the ZSM-5 and ZSM-11 zeolites. Zeolites 3, 4349.CrossRefGoogle Scholar
Ohnishi, N.K. & Hiraga, K. (1996). Slow-scan CCD camera analysis of electron diffraction and high-resolution micrographs of zeolite TPA/ZSM-5. J Electron Microsc 45, 8592.CrossRefGoogle Scholar
Pan, M. & Crozier, P.A. (1993). Quantitative imaging and diffraction of zeolites using a slow-scan CCD camera. Ultramicrosc 52, 487498.Google Scholar
Reimer, L. (1993). Image formation in low-voltage scanning electron microscopy. Bellingham, WA: SPIE Optical Engineering Press.
Terasaki, O. (1993). HREM study of the fine structures of zeolites and materials confined in their spaces: Are zeolites good enough as containers for confined materials? J Sol State Chem 106, 190200.Google Scholar
Terasaki, O. & Ohsuna, T. (1995). What can we observe in zeolite related materials by HRTEM? Catalysis Today 23, 201218.Google Scholar
Thomas, J.M., Millward, G.R., Ramas, S., & Bursill, L.A. (1981). New methods for the structural characterization of shape-selective zeolites. Faraday Discuss. Chem Soc 72, 345362.CrossRefGoogle Scholar
Thomas, J.M., Millward, G.R., Ramdas, S., & Audier, M. (1983). New approaches to the structural characterization of zeolites: High resolution electron microscopy and optical diffractometry. Acta Chem Scan 6, 181197.Google Scholar
Thomas, J.M., Ramdas, S., Millward, G.R., Klinowski, J., Audier, M., Gonzalez-Calbet, J., & Fyfe, C.A. (1982). Surprises in the structural chemistry of zeolites. J Sol Stat Chem 45, 368380.Google Scholar
Vos Burchart, E., Van Koningefvelt, H., & Van De Graaf, B. (1997). Molecular mechanics study of TBA and TPA in MEL and MFI. Microporous Mater 8, 215222.Google Scholar
Ziese, U., Janssen, A.H., Murk, J.-L., Geerts, W.J.C., Van Der Krift, T., Verkleij, A.J., & Koster, A.J. (2002). Automated high-throughput electron tomography by pre-calibration of image shifts. J Microsc 205, 187200.Google Scholar