Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T18:59:36.421Z Has data issue: false hasContentIssue false

Characterization of Al2O3 in High-Strength Mo Alloy Sheets by High-Resolution Transmission Electron Microscopy

Published online by Cambridge University Press:  25 February 2016

Yucheng Zhou*
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
Yimin Gao
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
Shizhong Wei
Affiliation:
Henan Engineering Research Center for Wear of Materials, Henan University of Science & Technology, Luoyang 471003, China
Yajie Hu
Affiliation:
Henan Engineering Research Center for Wear of Materials, Henan University of Science & Technology, Luoyang 471003, China
*
*Corresponding author. zycwlm@163.com
Get access

Abstract

A novel type of alumina (Al2O3)-doped molybdenum (Mo) alloy sheet was prepared by a hydrothermal method and a subsequent powder metallurgy process. Then the characterization of α-Al2O3 was investigated using high-resolution transmission electron microscopy as the research focus. The tensile strength of the Al2O3-doped Mo sheet is 43–85% higher than that of the pure Mo sheet, a very obvious reinforcement effect. The sub-micron and nanometer-scale Al2O3 particles can increase the recrystallization temperature by hindering grain boundary migration and improve the tensile strength by effectively blocking the motion of the dislocations. The Al2O3 particles have a good bond with the Mo matrix and there exists an amorphous transition layer at the interface between Al2O3 particles and the Mo matrix in the as-rolled sheet. The sub-structure of α-Al2O3 is characterized by a number of nanograins in the $\left[ {2\bar{2}1} \right]$ direction. Lastly, a new computer-based method for indexing diffraction patterns of the hexagonal system is introduced, with 16 types of diffraction patterns of α-Al2O3 indexed.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, E., Malekzadeh, M. & Sadrnezhaad, S.K. (2011). Preparation of nanostructured high-temperature TZM alloy by mechanical alloying and sintering. Int J Refract Met H 29, 141145.CrossRefGoogle Scholar
Alemi, A., Hosseinpour, Z., Dolatyari, M. & Bakhtiari, A. (2012). Boehmite (gamma-AlOOH) nanoparticles: Hydrothermal synthesis, characterization, pH-controlled morphologies, optical properties, and DFT calculations. Phys Status Solidi B 249(6), 12641270.CrossRefGoogle Scholar
Chakraborty, S.P., Banerjee, S., Sharma, I.G., Paul, B. & Suri, A.K. (2009). Studies on the synthesis and characterization of a Mo-based alloy. J Alloys Compd 477, 256261.CrossRefGoogle Scholar
Chen, C., Wang, S., Ji, Y.L., Wang, M.P., Li, Z. & Wang, Z.X. (2014). The microstructure and texture of Mo–La2O3 alloys with high transverse ductility. J Alloys Compd 589, 531538.CrossRefGoogle Scholar
Chithambararaj, A. & Chandra Bose, A. (2011). Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. J Alloys Compd 509, 81058110.CrossRefGoogle Scholar
Cockeram, B.V. (2010). The role of stress state on the fracture toughness and toughening mechanisms of wrought Mo and Mo alloys. Mat Sci Eng A Struct 528, 288308.CrossRefGoogle Scholar
Dubiel, B., Chmielewski, M., Moskalewicz, T., Gruszczynski, A. & Czyrska-Filemonowicz, A. (2014). Microstructural characterization of novel Mo-Re-Al2O3 composite. Mater Lett 124, 137140.CrossRefGoogle Scholar
Fan, J., Qian, Z. & Cheng, H. (2013). Effect of trace TiC/ZrC on property and microstructure of TZM alloy at room and high temperature. Rare Metal Mat Eng 42(4), 853856.Google Scholar
Jang, O.J., Yang, C.-W. & Lee, D.B. (2013). Transmission electron microscopy characterization of thermomechanically treated Al3Ti–~8, 10, 15% Cr intermetallics. Microsc Microanal 19(Suppl 5), 8994.CrossRefGoogle ScholarPubMed
Li, G.R., Wang, H.M., Yuan, X.T. & Zhao, Y.T. (2013). Microstructure of nanometer Al2O3 particles reinforced aluminum matrix composites processed by high pulsed electromagnetic field. Mater Lett 99, 5053.CrossRefGoogle Scholar
Li, L., Wang, L.-L., Sanchez, S.I., Kang, J.H., Wang, Q., Zhang, Z., Frenkel, A.I., Johnson, D.D., Nuzzo, R.G. & Yang, J.C. (2009). HREM, EXAFS and MD studies on size-dependent crystallinity of Pt nanoparticles supported on γ-Al2O3. Microsc Microanal 15(Suppl 2), 12101211.CrossRefGoogle Scholar
Liu, J., Suryanarayana, C., Ghosh, D., Subhash, G. & An, L. (2013). Synthesis of Mg-Al2O3 nanocomposites by mechanical alloying. J Alloys Compd 563, 165170.CrossRefGoogle Scholar
Liu, Z. (2008). Fundamentals of Materials Science, 3rd ed. Xi’an, China: Northwestern Polytechnical University Press, pp. 304–315.Google Scholar
Motta, M.S., Jena, P.K., Brocchi, E.A. & Solórzano, I.G. (2001). Characterization of Cu–Al2O3 nano-scale composites synthesized by in situ reduction. Mater Sci Eng C Mater 15, 175177.CrossRefGoogle Scholar
Pohl, C., Schatte, J. & Leitner, H. (2013). Solid solution softening of polycrystalline Mo–hafnium alloys. J Alloys Compd 576, 250256.CrossRefGoogle Scholar
Primig, S., Clemens, H., Knabl, W., Lorich, A. & Stickler, R. (2015). Orientation dependent recovery and recrystallization behavior of hot-rolled Mo. Int J Refract Met H 48, 179186.CrossRefGoogle Scholar
Primig, S., Leitner, H., Clemens, H., Lorich, A., Knabl, W. & Stickler, R. (2010). On the recrystallization behavior of technically pure Mo. Int J Refract Met H 28, 703708.CrossRefGoogle Scholar
Simões, S., Viana, F., Ramos, A.S., Vieira, M.T. & Vieira, M.F. (2015). TEM and HRTEM characterization of TiAl diffusion bonds using Ni/Al nanolayers. Microsc Microanal 21, 132139.CrossRefGoogle ScholarPubMed
Su, X.H., Chen, S.F. & Zhou, Z.J. (2012). Synthesis and characterization of monodisperse porous alpha-Al2O3 nanoparticles. Appl Surf Sci 258, 57125715.CrossRefGoogle Scholar
Subasri, R. & Näfe, H. (2008). Texture in Na-beta-Al2O3 due to microwave processing. Mater Chem Phys 112, 1619.CrossRefGoogle Scholar
Tavoosi, M., Karimzadeh, F. & Enayati, M.H. (2008). Fabrication of Al-Zn/alpha-Al2O3 nanocomposite by mechanical alloying. Mater Lett 62, 282285.CrossRefGoogle Scholar
Vestergaard, J.S., Kling, J., Dahl, A.B., Hansen, T.W., Wagner, J.B. & Larsen, R. (2014). Structure identification in high-resolution transmission electron microscopic images: An example on graphene. Microsc Microanal 20, 17721781.CrossRefGoogle ScholarPubMed
Wang, Y., Gao, J., Chen, G., Li, W., Zhou, Y. & Wei, Z. (2008). Properties at elevated temperature and recrystallization of Mo doped with potassium, silicon and aluminum. Int J Refract Met H 26, 913.CrossRefGoogle Scholar
Wei, S., Xu, L., Zhang, G., Li, J. & Dai, B. (2012). Microstructure and properties of Mo-based composites reinforced by Al2O3. Appl Mech Mater 120, 467470.CrossRefGoogle Scholar
Wesemann, I., Hoffmann, A., Mrotzek, T. & Martin, U. (2010). Investigation of solid solution hardening in Mo alloys. Int J Refract Met H 28, 709715.CrossRefGoogle Scholar
Xie, H., Li, F. & Wang, Y. (2011). Study on dynamic recrystallization behavior of powder metallurgy Mo. Rare Metal Mater Eng 40, 669672.Google Scholar
Xu, L., Wei, S., Liu, Q., Zhang, G. & Li, J. (2013). Microstructure and high-temperature frictional wear property of Mo-based composites reinforced by aluminum and lanthanum oxides. Tribology Trans 56(5), 833840.CrossRefGoogle Scholar
Zaki, T., Kabel, K.I. & Hassan, H. (2012). Using modified Pechini method to synthesize alpha-Al2O3 nanoparticles of high surface area. Ceram Int 38, 48614866.CrossRefGoogle Scholar
Zhang, G.-J., Sun, Y.-J., Zuo, C., Wei, J.-F. & Sun, J. (2008). Microstructure and mechanical properties of multi-components rare earth oxide-doped Mo alloys. Mater Sci Eng A Struct 483–484, 350352.CrossRefGoogle Scholar