Skip to main content Accessibility help

Centrosome Fine Ultrastructure of the Osteocyte Mechanosensitive Primary Cilium

  • R.E. Uzbekov (a1) (a2), D.B. Maurel (a3), P.C. Aveline (a3), S. Pallu (a3), C.L. Benhamou (a3) and G.Y. Rochefort (a3)...


The centrosome is the principal microtubule organization center in cells, giving rise to microtubule-based organelles (e.g., cilia, flagella). The aim was to study the osteocyte centrosome morphology at an ultrastructural level in relation to its mechanosensitive function. Osteocyte centrosomes and cilia in tibial cortical bone were explored by acetylated alpha-tubulin (AαTub) immunostaining under confocal microscopy. For the first time, fine ultrastructure and spatial orientation of the osteocyte centrosome were explored by transmission electron microscopy on serial ultrathin sections. AαTub-positive staining was observed in 94% of the osteocytes examined (222/236). The mother centriole formed a short primary cilium and was longer than the daughter centriole due to an intermediate zone between centriole and cilium. The proximal end of the mother centriole was connected with the surface of daughter centriole by striated rootlets. The mother centriole exhibited distal appendages that interacted with the cell membrane and formed a particular structure called “cilium membrane prolongation.” The primary cilium was mainly oriented perpendicular to the long axis of bone. Mother and daughter centrioles change their original mutual orientation during the osteocyte differentiation process. The short primary cilium is hypothesized as a novel type of fluid-sensing organelle in osteocytes.


Corresponding author

* Corresponding author. E-mail:
** Corresponding author. E-mail:


Hide All
Adams, G.M., Wright, R.L. & Jarvik, J.W. (1985). Defective temporal and spatial control of flagellar assembly in a mutant of Chlamydomonas reinhardtii with variable flagellar number. J Cell Biol 100(3), 955964.
Albrecht-Buehler, G. & Bushnell, A. (1979). The orientation of centrioles in migrating 3T3 cells. Exp Cell Res 120(1), 111118.
Alieva, I.B. & Uzbekov, R.E. (2008). The centrosome is a polyfunctional multiprotein cell complex. Biochemistry (Mosc) 73(6), 626643.
Alieva, I.B. & Vorobjev, I.A. (2004). Vertebrate primary cilia: A sensory part of centrosomal complex in tissue cells, but a “sleeping beauty” in cultured cells? Cell Biol Int 28(2), 139150.
Anderson, R.G. (1972). The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol 54(2), 246265.
Baud, C.A. (1968). Submicroscopic structure and functional aspects of the osteocyte. Clin Orthop Relat Res 56, 227236.
Bonewald, L.F. (2006). Mechanosensation and transduction in osteocytes. Bonekey Osteovision 3(10), 715.
Bonewald, L.F. (2007). Osteocytes as dynamic multifunctional cells. Ann NY Acad Sci 1116, 281290.
Bonewald, L.F. (2011). The amazing osteocyte. J Bone Miner Res 26(2), 229238.
Bonewald, L.F. & Johnson, M.L. (2008). Osteocytes, mechanosensing and Wnt signaling. Bone 42(4), 606615.
Burger, E.H., Klein-Nulend, J. & Smit, T.H. (2003). Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon—A proposal. J Biomech 36(10), 14531459.
Cambray-Deakin, M.A. & Burgoyne, R.D. (1987). Acetylated and detyrosinated alpha-tubulins are co-localized in stable microtubules in rat meningeal fibroblasts. Cell Motil Cytoskeleton 8(3), 284291.
Connolly, J.A., Kiosses, B.W. & Kalnins, V.I. (1986). Centrioles are lost as embryonic myoblasts fuse into myotubes in vitro . Eur J Cell Biol 39(2), 341345.
Corbit, K.C., Shyer, A.E., Dowdle, W.E., Gaulden, J., Singla, V., Chen, M.H., Chuang, P.T. & Reiter, J.F. (2008). Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10(1), 7076.
Davenport, J.R. & Yoder, B.K. (2005). An incredible decade for the primary cilium: A look at a once-forgotten organelle. Am J Physiol Renal Physiol 289(6), F1159–1169.
DeRouen, M.C. & Oro, A.E. (2009). The primary cilium: A small yet mighty organelle. J Invest Dermatol 129(2), 264265.
Dixon, W.E. & Inchley, O. (1905). The cilioscribe, an instrument for recording the activity of cilia. J Physiol 32(5-6), 395400.
Federman, M. & Nichols, G. Jr. (1974). Bone cell cilia: Vestigial or functional organelles? Calcif Tissue Res 17(1), 8185.
Gerdes, J.M., Liu, Y., Zaghloul, N.A., Leitch, C.C., Lawson, S.S., Kato, M., Beachy, P.A., Beales, P.L., DeMartino, G.N., Fisher, S., Badano, J.L. & Katsanis, N. (2007). Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet 39(11), 13501360.
Greenwood, M. (1892). On retractile cilia in the intestine of lumbricus terrestris. J Physiol 13(3-4), 239259.
Greer, K., Maruta, H., L'Hernault, S.W. & Rosenbaum, J.L. (1985). Alpha-tubulin acetylase activity in isolated Chlamydomonas flagella . J Cell Biol 101(6), 20812084.
Han, Y., Cowin, S.C., Schaffler, M.B. & Weinbaum, S. (2004). Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA 101(47), 1668916694.
Handel, M., Schulz, S., Stanarius, A., Schreff, M., Erdtmann-Vourliotis, M., Schmidt, H., Wolf, G. & Hollt, V. (1999). Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89(3), 909926.
Haycraft, C.J. & Serra, R. (2008). Cilia involvement in patterning and maintenance of the skeleton. Curr Top Dev Biol 85, 303332.
Heino, T.J., Kurata, K., Higaki, H. & Vaananen, H.K. (2009). Evidence for the role of osteocytes in the initiation of targeted remodeling. Technol Health Care 17(1), 4956.
Hibberd, D.J. (1975). Observations on the ultrastructure of the choanoflagellate Codosiga botrytis (Ehr.) Saville-Kent with special reference to the flagellar apparatus. J Cell Sci 17(1), 191219.
Huangfu, D. & Anderson, K.V. (2005). Cilia and hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102(32), 1132511330.
Jacobs, C.R., Temiyasathit, S. & Castillo, A.B. (2010). Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng 12, 369400.
Kitase, Y., Barragan, L., Qing, H., Kondoh, S., Jiang, J.X., Johnson, M.L. & Bonewald, L.F. (2010). Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the beta-catenin and PKA pathways. J Bone Miner Res 25(12), 26572668.
Koyama, E., Young, B., Nagayama, M., Shibukawa, Y., Enomoto-Iwamoto, M., Iwamoto, M., Maeda, Y., Lanske, B., Song, B., Serra, R. & Pacifici, M. (2007). Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development 134(11), 21592169.
Kwon, R.Y., Temiyasathit, S., Tummala, P., Quah, C.C. & Jacobs, C.R. (2010). Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J 24(8), 28592868.
Larson, D.E. & Dingle, A.D. (1981). Isolation, ultrastructure, and protein composition of the flagellar rootlet of Naegleria gruberi . J Cell Biol 89(3), 424432.
L'Hernault, S.W. & Rosenbaum, J.L. (1985a). Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 24(2), 473478.
L'Hernault, S.W. & Rosenbaum, J.L. (1985b). Reversal of the posttranslational modification on Chlamydomonas flagellar alpha-tubulin occurs during flagellar resorption. J Cell Biol 100(2), 457462.
Lin, F., Hiesberger, T., Cordes, K., Sinclair, A.M., Goldstein, L.S., Somlo, S. & Igarashi, P. (2003). Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 100(9), 52865291.
Liu, W., Murcia, N.S., Duan, Y., Weinbaum, S., Yoder, B.K., Schwiebert, E. & Satlin, L.M. (2005). Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 289(5), F978–988.
Low, S.H., Vasanth, S., Larson, C.H., Mukherjee, S., Sharma, N., Kinter, M.T., Kane, M.E., Obara, T. & Weimbs, T. (2006). Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10(1), 5769.
Malone, A.M., Anderson, C.T., Stearns, T. & Jacobs, C.R. (2007a). Primary cilia in bone. J Musculoskelet Neuronal Interact 7(4), 301.
Malone, A.M., Anderson, C.T., Tummala, P., Kwon, R.Y., Johnston, T.R., Stearns, T. & Jacobs, C.R. (2007b). Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104(33), 1332513330.
Maruta, H., Greer, K. & Rosenbaum, J.L. (1986). The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules. J Cell Biol 103(2), 571579.
Maurel, D.B., Jaffre, C., Rochefort, G.Y., Aveline, P.C., Boisseau, N., Uzbekov, R., Gosset, D., Pichon, C., Fazzalari, N.L., Pallu, S. & Benhamou, C.L. (2011). Low bone accrual is associated with osteocyte apoptosis in alcohol-induced osteopenia. Bone 49(3), 543552.
Mullins, R. & Wette, R. (1966). On the statistical expectation and evaluation of centriole orientations in cell profiles. J Cell Biol 30(3), 652655.
Nauli, S.M., Alenghat, F.J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A.E., Lu, W., Brown, E.M., Quinn, S.J., Ingber, D.E. & Zhou, J. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2), 129137.
Nicolella, D.P., Moravits, D.E., Gale, A.M., Bonewald, L.F. & Lankford, J. (2006). Osteocyte lacunae tissue strain in cortical bone. J Biomech 39(9), 17351743.
Noble, B.S. (2008). The osteocyte lineage. Arch Biochem Biophys 473(2), 106111.
Nonaka, S., Yoshiba, S., Watanabe, D., Ikeuchi, S., Goto, T., Marshall, W.F. & Hamada, H. (2005). De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol 3(8), e268.
Olsen, B. (2005). Nearly all cells in vertebrates and many cells in invertebrates contain primary cilia. Matrix Biol 24(7), 449450.
Ong, A.C. & Wheatley, D.N. (2003). Polycystic kidney disease—The ciliary connection. Lancet 361(9359), 774776.
Pacheco, M., Valencia, M., Caparros-Martin, J.A., Mulero, F., Goodship, J.A. & Ruiz-Perez, V.L. (2012). Evc works in chondrocytes and osteoblasts to regulate multiple aspects of growth plate development in the appendicular skeleton and cranial base. Bone 50(1), 2841.
Parfitt, A.M. (1977). The cellular basis of bone turnover and bone loss: A rebuttal of the osteocytic resorption—Bone flow theory. Clin Orthop Relat Res 127, 236247.
Pazour, G.J. (2004). Intraflagellar transport and cilia-dependent renal disease: The ciliary hypothesis of polycystic kidney disease. J Am Soc Nephrol 15(10), 25282536.
Piperno, G. & Fuller, M.T. (1985). Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol 101(6), 20852094.
Piperno, G., LeDizet, M. & Chang, X.J. (1987). Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104(2), 289302.
Plotkin, L.I., Lezcano, V., Thostenson, J., Weinstein, R.S., Manolagas, S.C. & Bellido, T. (2008). Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo . J Bone Miner Res 23(11), 17121721.
Plotkin, L.I., Manolagas, S.C. & Bellido, T. (2007). Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival. Evidence for inside-out signaling leading to anoikis. J Biol Chem 282(33), 2412024130.
Plotnikova, O.V., Golemis, E.A. & Pugacheva, E.N. (2008). Cell cycle-dependent ciliogenesis and cancer. Cancer Res 68(7), 20582061.
Poole, C.A., Flint, M.H. & Beaumont, B.W. (1985). Analysis of the morphology and function of primary cilia in connective tissues: A cellular cybernetic probe? Cell Motil 5(3), 175193.
Poole, C.A., Zhang, Z.J. & Ross, J.M. (2001). The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes. J Anat 199(Pt 4), 393405.
Praetorius, H.A. & Spring, K.R. (2001). Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184(1), 7179.
Qiu, N., Cao, L., David, V., Quarles, L.D. & Xiao, Z. (2010). Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis. PLoS One 5(12), e15240.
Rattner, J.B. & Phillips, S.G. (1973). Independence of centriole formation and DNA synthesis. J Cell Biol 57(2), 359372.
Robbins, E., Jentzsch, G. & Micali, A. (1968). The centriole cycle in synchronized HeLa cells. J Cell Biol 36(2), 329339.
Rochefort, G.Y., Pallu, S. & Benhamou, C.L. (2010). Osteocyte: The unrecognized side of bone tissue. Osteoporos Int 21(9), 14571469.
Rosenbaum, J.L. & Witman, G.B. (2002). Intraflagellar transport. Nat Rev Mol Cell Biol 3(11), 813825.
Santos, A., Bakker, A.D., Zandieh-Doulabi, B., Semeins, C.M. & Klein-Nulend, J. (2009). Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. J Orthop Res 27(10), 12801287.
Sasse, R., Glyn, M.C., Birkett, C.R. & Gull, K. (1987). Acetylated alpha-tubulin in Physarum: immunological characterization of the isotype and its usage in particular microtubular organelles. J Cell Biol 104(1), 4149.
Scherft, J.P. & Daems, W.T. (1967). Single cilia in chondrocytes. J Ultrastruct Res 19(5), 546555.
Schneider, L., Clement, C.A., Teilmann, S.C., Pazour, G.J., Hoffmann, E.K., Satir, P. & Christensen, S.T. (2005). PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15(20), 18611866.
Scholey, J.M. (2003). Intraflagellar transport. Annu Rev Cell Dev Biol 19, 423443.
Simons, M., Gloy, J., Ganner, A., Bullerkotte, A., Bashkurov, M., Kronig, C., Schermer, B., Benzing, T., Cabello, O.A., Jenny, A., Mlodzik, M., Polok, B., Driever, W., Obara, T. & Walz, G. (2005). Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37(5), 537543.
Singla, V. & Reiter, J.F. (2006). The primary cilium as the cell's antenna: Signaling at a sensory organelle. Science 313(5787), 629633.
Siroky, B.J., Ferguson, W.B., Fuson, A.L., Xie, Y., Fintha, A., Komlosi, P., Yoder, B.K., Schwiebert, E.M., Guay-Woodford, L.M. & Bell, P.D. (2006). Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. Am J Physiol Renal Physiol 290(6), F1320–1328.
Tassin, A.M., Maro, B. & Bornens, M. (1985). Fate of microtubule-organizing centers during myogenesis in vitro . J Cell Biol 100(1), 3546.
Temiyasathit, S. & Jacobs, C.R. (2010). Osteocyte primary cilium and its role in bone mechanotransduction. Ann NY Acad Sci 1192, 422428.
Teti, A. & Zallone, A. (2009). Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44(1), 1116.
Uzbekov, R. & Prigent, C. (2007). Clockwise or anticlockwise? Turning the centriole triplets in the right direction! FEBS Lett 581(7), 12511254.
Uzbekov, R.E. & Alieva, I.B. (2008). The centrosome—A riddle of the “cell processor.” Tsitologiia 50(2), 91112 (in Russian).
Vasil'ev, N.B., Vorob'ev, I.A., Leontovich, A.M. & Petrovskaia, M.B. (1988). An analysis of the centriole orientation in tissue culture cells. Tsitologiia 30(9), 10911100 (in Russian).
Vorobjev, I.A. & Chentsov, Yu. S. (1982). Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol 93(3), 938949.
Whitfield, J.F. (2003). Primary cilium—Is it an osteocyte's strain-sensing flowmeter? J Cell Biochem 89(2), 233237.
Xiao, Z., Zhang, S., Mahlios, J., Zhou, G., Magenheimer, B.S., Guo, D., Dallas, S.L., Maser, R., Calvet, J.P., Bonewald, L. & Quarles, L.D. (2006). Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281(41), 3088430895.
Xiao, Z.S. & Quarles, L.D. (2010). Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann NY Acad Sci 1192, 410421.
You, L.D., Weinbaum, S., Cowin, S.C. & Schaffler, M.B. (2004). Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec 278(2), 505513.


Type Description Title
Supplementary materials

Rustem Uzbekov Supplementary Material

 PDF (571 KB)
571 KB

Centrosome Fine Ultrastructure of the Osteocyte Mechanosensitive Primary Cilium

  • R.E. Uzbekov (a1) (a2), D.B. Maurel (a3), P.C. Aveline (a3), S. Pallu (a3), C.L. Benhamou (a3) and G.Y. Rochefort (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed