Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T01:48:51.891Z Has data issue: false hasContentIssue false

Assessment of Metal Pollution Sources by SEM/EDS Analysis of Solid Particles in Snow: A Case Study of Žerjav, Slovenia

Published online by Cambridge University Press:  28 August 2013

Miloš Miler*
Affiliation:
Geological Survey of Slovenia, Dimičeva 14, SI1000 Ljubljana, Slovenia
Mateja Gosar
Affiliation:
Geological Survey of Slovenia, Dimičeva 14, SI1000 Ljubljana, Slovenia
*
*Corresponding author. E-mail: milos.miler@geo-zs.si
Get access

Abstract

Solid particles in snow deposits, sampled in mining and Pb-processing area of Žerjav, Slovenia, have been investigated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Identified particles were classified as geogenic–anthropogenic, anthropogenic, and secondary weathering products. Geogenic–anthropogenic particles were represented by scarce Zn- and Pb-bearing ore minerals, originating from mine waste deposit. The most important anthropogenic metal-bearing particles in snow were Pb-, Sb- and Sn-bearing oxides and sulphides. The morphology of these particles showed that they formed at temperatures above their melting points. They were most abundant in snow sampled closest to the Pb-processing plant and least abundant in snow taken farthest from the plant, thus indicating that Pb processing was their predominant source between the last snowfall and the time of sampling. SEM/EDS analysis showed that Sb and Sn contents in these anthropogenic phases were higher and more variable than in natural Pb-bearing ore minerals. The most important secondary weathering products were Pb- and Zn-containing Fe-oxy-hydroxides whose elemental composition and morphology indicated that they mostly resulted from oxidation of metal-bearing sulphides emitted from the Pb-processing plant. This study demonstrated the importance of single particle analysis using SEM/EDS for differentiation between various sources of metals in the environment.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alloway, B.J. (1995). Soil processes and the behaviour of metals. In Heavy Metals in Soil, Alloway, B.J. (Ed.), pp. 1137. London: Blackie Academic & Professional.Google Scholar
Anshits, A.G., Sharonova, O.M., Anshits, N.N., Vereshchagin, S.N., Rabchevskii, E.V. & Solovjev, L.A. (2011). Ferrospheres from fly ashes: Composition and catalytic properties in high-temperature oxidation of methane. World of Coal Ash (WOCA) Conference, Denver, CO, May 9–12. Available at http://www.flyash.info/. Accessed November 10, 2011.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. & Nichols, M.C. (2009). The Handbook of Mineralogy. Chantilly, VA: Mineralogical Society of America. Available at http://www.handbookofmineralogy.org/. Accessed August 11, 2011.Google Scholar
Aragon, A.P., Torres, G.V., Monroy, M.F, Luszczewski, A.K. & Leyva, R.R. (2000). Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, Mexico. Atmos Environ 34, 41034112.Google Scholar
Barthelmy, D. (2010). The mineralogy database. Available at http://webmineral.com/. Accessed August 11, 2011.Google Scholar
Biegalski, S.R., Currie, L.A., Fletcher, R.A., Klouda, G.A. & Weissenbök, R. (1998). AMS and microprobe analysis of combusted particles in ice and snow. Radiocarbon 40, 310.Google Scholar
Bole, M., Druks, P., Rošer-Drev, A. & Vetrih, M. (2002). Meža with tributaries—Sediment, water segment (in Slovene). In Comparative Study of Environmental Pollution in Upper Meža Valley Between the Years 1989 and 2001, Final Report, Ribarič-Lasnik, C. (Ed.), pp. 106125. Velenje, Slovenia: ERICo, Institute for Ecological Research.Google Scholar
Bolte, T. (2008). Monitoring of External Air in the Upper Meža Valley (in Slovene). Ljubljana, Slovenia: Environmental Agency of the Republic of Slovenia.Google Scholar
Bolte, T. (2009). Air Quality in Slovenia in the Year 2008 (in Slovene). Ljubljana, Slovenia: Environmental Agency of the Republic of Slovenia.Google Scholar
Budkovič, T., Šajn, R., Gosar, M. & Fux, J. (2006). Harmonization with the Activities of the European Union: Inventory of Mine, Flotation and Smelter Waste Deposits in GIS Environment in the Area of Mežica Pb-Zn Mine: Report. Ljubljana, Slovenia: Geological Survey of Slovenia.Google Scholar
Caritat, P.D., Ayras, M., Niskavaara, H., Chekushin, V., Bogatyrev, I. & Reimann, C. (1998). Snow composition in eight catchments in the central Barents Euro-Arctic region. Atmos Environ 32, 26092626.Google Scholar
Chen, T.T. & Dutrizac, J.E. (1996). The mineralogical characterization of lead-acid battery paste. Hydrometallurgy 40, 223245.Google Scholar
Chen, Y., Shah, N., Huggins, F.E. & Huffman, G.P. (2006). Microanalysis of ambient particles from Lexington, KY, by electron microscopy. Atmos Environ 40, 651663.Google Scholar
Choël, M., Deboudt, K. & Flament, P. (2010). Development of time-resolved description of aerosol properties at the particle scale during an episode of industrial pollution plume. Water Air Soil Poll 209, 93107.CrossRefGoogle Scholar
Choël, M., Deboudt, K., Flament, P., Aimoz, L. & Mériaux, X. (2007). Single-particle analysis of atmospheric aerosols at Cape Gris-Nez, English Channel: Influence of steel works on iron apportionment. Atmos Environ 41, 28202830.Google Scholar
Clark, A.H. & Sillitoe, R.H. (1971). Cuprian galena solid solutions, Zapallar mining district, Atacama, Chile. Am Mineral 56, 21422145.Google Scholar
Corrin, M.L. & Natusch, D.F.S. (1977). Physical and chemical characteristics of environmental lead. In Lead in the Environment, Bogess, W.R. (Ed.), pp. 731. Washington, DC: National Science Foundation.Google Scholar
Davis, H.T., Aelion, C.M., McDermott, S. & Lawson, A.B. (2009). Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ Pollut 157, 23782385.Google Scholar
Dervarič, E., Herlec, U., Likar, J., Bajželj, U. & Strahovnik, V. (2005). Mines and Coalmines in Slovenia (in Slovene). Ljubljana, Slovenia: Argos.Google Scholar
Drab, E., Gaudichet, A., Jaffrezob, J.L. & Colina, J.L. (2002). Mineral particles content in recent snow at Summit (Greenland). Atmos Environ 36, 53655376.CrossRefGoogle Scholar
Družina, B. & Perc, A. (2007). Sites in the Republic of Slovenia polluted by heavy metals: Strategy and actions planned in the area. In Contaminated Soils Volume 12, Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Kostecki, P.T., Calabrese, E.J. & Dragun, J. (Eds.), pp. 119135. Berkeley, CA: The Berkeley Electronic Press.Google Scholar
Engelhard, C., De Toffol, S., Lek, I., Rauch, W. & Dallinger, R. (2007). Environmental impacts of urban snow management—The alpine case study of Innsbruck. Sci Total Environ 382, 286294.Google Scholar
Ettler, V. & Johan, Z. (2003). Mineralogy of metallic phases in sulphide mattes from primary lead smelting. C R Geosci 335, 10051012.Google Scholar
Ettler, V., Johan, Z., Baronnet, A., Jankovský, F., Gilles, G., Mihaljevič, M., Šebek, O., Strnad, L. & Bezdička, P. (2005). Mineralogy of air-pollution-control residues from a secondary lead smelter: Environmental implications. Environ Sci Technol 39, 93099316.Google Scholar
Ettler, V., Johan, Z., Bezdička, P., Drábek, M. & Šebek, O. (2009). Crystallization sequences in matte and speiss from primary lead metallurgy. Eur J Mineral 21, 837854.Google Scholar
Ettler, V., Tejnecký, V., Mihaljevič, M., Šebek, O., Zuna, M. & Vaněk, A. (2010). Antimony mobility in lead smelter-polluted soils. Geoderma 155, 409418.Google Scholar
Fux, J. & Gosar, M. (2007). Lead and other heavy metals in stream sediments in the area of Meža Valley. Geologija 50, 347360.Google Scholar
Girard, J.E. (2010). Principles of Environmental Chemistry, 2nd ed. Sudbury, MA: Jones & Bartlett Publishers.Google Scholar
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Gonzalez, I., Jordan, M.M., Sanfeliu, T., Quiroz, M. & de la Fuente, C. (2007). Mineralogy and heavy metal content in sediments from Rio Gato, Carelmapu and Cucao, Southern Chile. Environ Geol 52, 12431251.CrossRefGoogle Scholar
Gosar, M. & Miler, M. (2011). Anthropogenic metal loads and their sources in stream sediments of the Meža River catchment area (NE Slovenia). Appl Geochem 26, 18551866.CrossRefGoogle Scholar
Gregurek, D., Melcher, F. & Niskavaara, H. (1999). Platinum-group elements (Rh, Pt, Pd) and Au distribution in snow samples from the Kola Peninsula, NW Russia. Atmos Environ 33, 32813290.Google Scholar
Guthmann, K. (1958). Das Problem “Reinhaltung der Luft” unter besonderer Berücksichtigung der Eisenhütten-, insbesondere Stahlwerksbetriebe. Radex-Rundschau 1, 330.Google Scholar
Hansen, M. & Anderko, K. (1958). Constitution of Binary Alloys, 2nd ed. New York: McGraw-Hill Book Company.CrossRefGoogle Scholar
Haygarth, P.M. & Jones, K.C. (1992). Atmospheric deposition of metals to agricultural surfaces. In Biogeochemistry of Trace Metals, Adriano, D.C. (Ed.), pp. 249276. Boca Raton, FL: Lewis Publishers.Google Scholar
Heaney, P.J. (1997). Crystal growth-fast and slow. In Teaching Mineralogy, Brady, J., Mogk, D.W. & Perkins, D. (Eds.), pp. 6778. Washington, DC: Mineralogical Society of America.Google Scholar
Ikeda, S., Mori, Y., Maeda, M., Minami, S. & Kozawa, A. (2003). Dissolution of antimony into lead-acid batteries' electrolyte for EV applications. J Asian Electric Vehicles 1, 459462.Google Scholar
Jenkins, A.A., Maskell, W.C. & Tye, F.L. (1987). Antimony in lead-acid cells IV. Review and design considerations. J Power Sources 19, 7580.Google Scholar
JEOL (2007). JSM-6490LV Scanning Electron Microscope, Instruction Manual. Tokyo: JEOL Ltd. Japan.Google Scholar
Knight, R.D. & Henderson, P.J. (2006). Smelter dust in humus around Rouyn-Noranda, Québec. Geochem-Explor Env A 6, 203214.Google Scholar
Micic, M., Leblanc, R.M., Markovic, D., Stamatovic, A., Vukelic, N. & Polic, P. (2003). Atlas of the tropospheric aerosols from Belgrade troposphere. Fresen Environ Bull 12, 110.Google Scholar
Miler, M. (2012). Application of SEM/EDS to environmental mineralogy and geochemistry. PhD Thesis, Ljubljana, Slovenia: University of Ljubljana, Faculty of Natural Sciences and Engineering. Google Scholar
Miler, M. & Gosar, M. (2012). Characteristics and potential environmental influences of mine waste in the area of the closed Mežica Pb–Zn mine (Slovenia). J Geochem Explor 112, 152160.Google Scholar
Möller, P., Dulski, P., Szacki, W., Malow, G. & Riedel, E. (1988). Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese. Geochim Cosmochim Ac 52, 14971503.CrossRefGoogle Scholar
Morachevskii, A.G., Vaisgant, Z.I., Rusin, A.I. & Khabachev, M.N. (2001). Removal of sulfur from the active mass of lead battery scrap. Russ J Appl Chem 74, 10751077.Google Scholar
Mudge, S.M. (2008). Environmental forensics and the importance of source identification. In Environmental Forensics, Hester, R.E. & Harrison, R.M. (Eds.), pp. 116. Cambridge, UK: Royal Society of Chemistry.Google Scholar
Neinavaie, H. (1992). Mineralphasenuntersuchungen an Bleischlacke, pelletierten Flugstaub sowie magnetischer Fraktion von Bodenproben aus dem Gebiet Žerjav/Mežica: Research Report. Linz, Austria: Voest-Alpine Stahl Linz.Google Scholar
Neinavaie, H., Pirkl, H. & Schedl, A. (2008). Mineralogisch-mikrochemische Untersuchungen (Mineralphasenanalytik) als unterstützende Tools für die Interpretation (umwelt-) geochemischer Analysenergebnisse. In Symp. 30 Jahre angewandte Geochemie in Österreich-von der Prospektionsgeochemie zur angewandten Umweltgeochemie, Vienna, 6–7 November 2008: Berichte der Geologischen Bundesanstalt Bd. 77, Schedl, A. (Ed.), pp. 5052. Vienna: Geologische Bundesanstalt.Google Scholar
Neinavaie, H., Pirkl, H. & Trimbacher, C. (2000). Herkunft und Charakteristik von Stäuben: Research Report. Vienna: Umweltbundesamt.Google Scholar
Obiri-Nyarko, F. (2010). Simulation of heavy metal leaching from cement-stabilized polluted sediments. Master's Thesis, Oslo: University of Oslo, Faculty of Mathematics and Natural Sciences. Google Scholar
Oxford Instruments (2006). INCA Energy Operator Manual. High Wycombe, UK: Oxford Instruments Analytical Ltd. Google Scholar
Piantone, P., Bodénan, F. & Chatelet-Snidaro, L. (2004). Mineralogical study of secondary mineral phases from weathered MSWI bottom ash: Implications for the modelling and trapping of heavy metals. Appl Geochem 19, 18911904.Google Scholar
Pungartnik, G. & Kosec, P. (1965). From the Koroška flame to rotary furnace (in Slovene). In 300 Years of the Mežica Mines, Štrucl, I., Uran, S., Mrdavšič, A., Mežnar, F. & Mauhler, F. (Eds.), pp. 181200. Mežica, Slovenia: Association of Mining, Metallurgic and Geological Engineers and Technicians.Google Scholar
Puziewicz, J., Zainoun, K. & Bril, H. (2007). Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świetochłowice, Upper Silesia, Poland. Can Mineral 45, 11891200.Google Scholar
Šajn, R. (2006). Factor analysis of soil and attic-dust to separate mining and metallurgy influence, Meža Valley, Slovenia. Math Geol 38, 735747.Google Scholar
Schöner, W., Staudinger, M., Winiwarter, W. & Pichlmayer, F. (1993). Dating of snow samples from snow pits at Sonnblick, Austrian Alps as a tool for interpretation of chemical analysis. In The Proceedings of EUROTRAC Symposium '92, Borell, P.M., Borell, P., Cvitas, T. & Seiler, W. (Eds.), pp. 753756. The Hague: SPB Academic Publishing.Google Scholar
Seames, W.S. (2003). An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Process Technol 81, 109125.Google Scholar
Sokol, E.V., Kalugin, V.M., Nigmatulina, E.N., Volkova, N.I., Frenkel, A.E. & Maksimova, N.V. (2002). Ferrospheres from fly ashes of Chelyabinsk coals: Chemical composition, morphology and formation conditions. Fuel 81, 867876.Google Scholar
Štrucl, I. (1984). Geological and geochemical characteristics of ore and host rock of lead-zinc ores of the Mežica ore deposit (in Slovene). Geologija 27, 215327.Google Scholar
Svete, P., Milačič, R. & Pihlar, B. (2001). Partitioning of Zn, Pb and Cd in river sediments from a lead and zinc mining area using the BCR three-step sequential extraction procedure. J Environ Monitor 3, 586590.CrossRefGoogle ScholarPubMed
Tani, Y., Miyata, N., Iwahori, K., Soma, M. & Tokuda, S. (2003). Biogeochemistry of manganese oxide coatings on pebble surfaces in the Kikukawa River System, Shizuoka, Japan. Appl Geochem 18, 15411554.Google Scholar
Tasić, M., đurić-Stanojević, B., Rajšić, S., Mijić, Z. & Novaković, V. (2006). Physico-chemical characterization of PM10 and PM2.5 in the Belgrade urban area. Acta Chim Slov 53, 401405.Google Scholar
Telmer, K., Bonham-Carter, G.F., Kliza, D.A. & Hall, G.E.M. (2004). The atmospheric transport and deposition of smelter emissions: Evidence from the multi-element geochemistry of snow, Quebec, Canada. Geochim Cosmochim Ac 68, 29612980.Google Scholar
Thalmann, F., Schermann, O., Schroll, E. & Hausberger, G. (1989). Geochemical Atlas of the Republic of Austria, 1:100,000. Vienna: Geologische Bundesanstalt.Google Scholar
TPCM (2003). Final Report on Carcinogens Background Document for Lead and Lead Compounds. Durham, NC: Technology Planning and Management Corporation.Google Scholar
Umbria, A., Galán, M., Muñoz, M.J. & Martín, R. (2004). Characterization of atmospheric particles: Analysis of particles in the Campo de Gibraltar. Atmósfera 17, 191206.Google Scholar
Uzu, G., Sobanska, S., Sarret, G., Sauvain, J.J., Pradère, P. & Dumat, C. (2011). Characterization of lead-recycling facility emissions at various workplaces: Major insights for sanitary risks assessment. J Hazard Mater 186, 10181027.Google Scholar
Van der Perk, M. (2006). Soil and Water Contamination: From Molecular to Catchment Scale. Leiden, The Netherlands: Taylor and Francis/Balkema.Google Scholar
Vanderstraeten, P., Lénelle, Y., Meurrens, A., Carati, D., Brenig, L. & Offer, Z.Y. (2007). Temporal variations of airborne particles concentration in the Brussels environment. Environ Monit Assess 132, 253262.Google Scholar
Vanek, A., Ettler, V., Grygar, T., Boruvka, L., Šebek, O. & Drabek, O. (2008). Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere 18, 464478.Google Scholar
Vest, H. (2002). Fundamentals of the Recycling of Lead-Acid Batteries. Eschborn, Germany: GATE Information Service GTZ.Google Scholar
Viskari, E.L., Rekilä, R., Roy, S., Lehto, O., Ruuskanen, J. & Kärenlampi, L. (1997). Airborne pollutants along a roadside: Assessment using snow analyses and moss bags. Environ Pollut 97, 153160.Google Scholar
Vreča, P., Pirc, S. & Šajn, R. (2001). Natural and anthropogenic influences on geochemistry of soils in the terrains of barren and mineralized carbonate rocks in the Pb-Zn mining district of Mežica, Slovenia. J Geochem Explor 74, 99108.Google Scholar
Wadsley, A.D. (1950). A hydrous manganese oxide with exchange properties. J Am Chem Soc 72, 17811784.Google Scholar
Wang, C., Lu, B., Zuo, J., Zhang, S., Tan, S., Suzuki, M. & Chase, W.T. (1995). Structural and elemental analysis on the nanocrystalline SnO2 in the surface of ancient Chinese black mirrors. Nanostruct Mater 5, 489496.Google Scholar
Zhang, C., Yao, Q. & Sun, J. (2005). Characteristics of particulate matter from emissions of four typical coal-fired power plants in China. Fuel Process Technol 86, 757768.Google Scholar
Zupan, M. (2008). Research of Soil Pollution in Slovenia in the Year 2008. Phase Report. Ljubljana, Slovenia: University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Centre for Soil and Environmental Science.Google Scholar